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Abstract

Multi-agent task allocation in physical environ-
ments with spatial and temporal constraints, are
hard problems that are relevant in many realistic
applications. A task allocation algorithm based on
Fisher market clearing (FMC TA), that can be per-
formed either centrally or distributively, has been
shown to produce high quality allocations in com-
parison to both centralized and distributed state of
the art incomplete optimization algorithms. How-
ever, the algorithm is synchronous and therefore
depends on perfect communication between agents.
We propose FMC ATA, an asynchronous version
of FMC TA, which is robust to message latency
and message loss. In contrast to the former version
of the algorithm, FMC ATA allows agents to iden-
tify dynamic events and initiate the generation of
an updated allocation. Thus, it is more compatible
for dynamic environments. We further investigate
the conditions in which the distributed version of
the algorithm is preferred over the centralized ver-
sion. Our results indicate that the proposed asyn-
chronous distributed algorithm produces consistent
results even when the communication level is ex-
tremely poor.

1 Introduction
Task allocation is a major challenge in realistic scenarios,
e.g., disaster response, where medical personnel, fire fight-
ers, police, and mechanical entities (e.g., drones and un-
manned ground vehicles) need to coordinate their actions in
order to save as many victims as possible [Nunes et al., 2017;
Tadokoro et al., 2000; Jones et al., 2007]. Such coordination
is extremely challenging since in such scenarios the commu-
nication among agents is expected to be be severely degraded
and unreliable [Macarthur et al., 2011; Carrillo et al., 2021;
Otte et al., 2020].

Moreover, such scenarios are highly dynamic due to the ap-
pearance of new events or the change of the status of handled
events [Wei et al., 2016]. Identification of dynamic events,
would most likely be by the agents performing in the envi-
ronment. Thus, we expect the agents to be able to reinitialize

the solving process when necessary [Farinelli et al., 2017;
Fioretto et al., 2018].

Fisher Market Clearing Task Allocation (FMC TA) [Nelke
and Zivan, 2017] is an algorithm that was proposed for solv-
ing problems where a team of heterogeneous agents need
to cooperate in an environment that includes multiple tasks,
which require ad-hoc coalitions of agents with different skills
in order to properly handle them. The algorithm is com-
posed of two phases. In the first, the problem is reduced
to a Fisher market, having task performing agents as buyers
in the market and tasks as goods. Then, the corresponding
Fisher market clearing allocation is found. When the allo-
cation resulted in tasks that are shared among a number of
agents, an ad-hoc coalition was generated, which includes
the agents that received a share of the task. In the second
phase, a distributed ordering heuristic is performed for agents
to decide on the schedule for performing tasks, and to co-
ordinate mutual task performance by coalitions that share
tasks. The Fisher market clearing outcome is guaranteed to
be envy free and Pareto optimal [Devanur et al., 2002; Rei-
jnierse and Potters, 1998]. This unique combination results
in an allocation where agents share important and complex
tasks efficiently. FMC TA was shown to dominate state of
the art centralized and distributed task allocation algorithms.
These included general optimization algorithms such as Sim-
ulated annealing and designated algorithms such as Coalition
formation with look ahead (CFLA) [Farinelli et al., 2008;
Ramchurn et al., 2010; Nelke et al., 2020].

However, FMC TA as proposed in [Nelke and Zivan, 2017]
is a synchronous algorithm in which in each iteration of the
algorithm, agents perform calculations only after they re-
ceived all messages that they expect to be sent to them by
their neighbors [Zhang et al., 2005; Maheswaran et al., 2004;
Zivan et al., 2014]. Unfortunately, such a synchronous al-
gorithmic design incurs a number of drawbacks. Each syn-
chronous operation is performed only after all messages sent
in the previous iteration arrive, i.e., if a message is delayed,
the iteration starts late and if a message is lost, the agents are
in a deadlock. Moreover, the algorithm presented in [Nelke
and Zivan, 2017] was dependent on perfect knowledge that
the agents hold regarding the existence and importance of
tasks to be performed. Thus, the team of agents was not in-
dependent and relied on updates from a centralized system.

In order to overcome these limitations of FMC TA when



facing dynamic scenarios and imperfect communication, we
propose FMC ATA, an asynchronous version of the algorithm
that was designed while taking into consideration the possi-
bility that messages can be delayed or lost (i.e., communica-
tion aware). Moreover, in FMC ATA agents can detect dy-
namic events such as new tasks that need to be performed or
a change in the importance of a task that is currently being
handled, and trigger execution of the algorithm, for the team
to adapt to the evolved problem.

We investigated the properties of scenarios in which a dis-
tributed implementation of FMC ATA is preferred over a cen-
tralized implementation in which a central system is updated
by the agents regarding dynamic events, calculates and up-
dated allocation and updates the agents. Our results show
that in the presence of message latency, a clear threshold ex-
ists for distributed performance to be motivated, and when
message loss cannot be avoided, distributed performance is
always preferred.

In this work we contribute to the applicability of multi
agents task allocation algorithms to realistic problems
by: 1) Presenting the single phase version of the Fisher
Market Clearing Asynchronous Task Allocation algorithm
FMC ATA. 2) Demonstrating empirically that, not only does
the asynchronous version (FMC ATA) converge to the same
solution as FMC TA, but that it is also robust to message de-
lays and to message loss up to some extent. 3) Investigating
the communication conditions that make it more beneficial to
perform the algorithm distributively (and not centrally).

Our approach in investigating the performance of com-
munication aware task allocation follows recent publications
on the performance of distributed local search algorithms
and distributed incomplete inference algorithms in the pres-
ence of imperfect communication [Rachmut et al., 2022;
Zivan et al., 2021]. Our results demonstrate that FMC ATA
is a highly robust algorithm, that is compatible for dynamic
environments with imperfect communication.

2 Preliminaries
In this section we formalize the General Task Allocation
Problem (GTAP), which is an abstraction of LEP, the law en-
forcement problem (LEP is a specific instance of GTAP) that
was presented in [Nelke and Zivan, 2017]. We present both
static and dynamic versions, and specify how the formaliza-
tion represents communication limitations. In addition we
present the FMC TA algorithm that was proposed for solving
such problems in [Nelke and Zivan, 2017].

2.1 General Task Allocation Problem (GTAP)
A GTAP includes a set of cooperative agents A =
{a1, a2, ..., an}, a set of tasks V = {v1, v2, ..., vm} and a
set of unique skills S = {s1, s2, ..., sl}. Each agent ai has a
subset Si ∈ S of skills and each task vj has a subset Sj ∈ S
of required skills. We denote by vkj the sub-task of vj for
which there is a specified skill sk. For each sub-task vkj there
is a required workload wkj which specifies the workload of
a specific skill sk ∈ Sj that should be applied to vj in the
combined effort for completing this task. Thus, vj is com-
pleted only if for each of its sub-tasks, the proper amount of

work has been performed by agents that posses the required
skills. Each task and each agent has a physical location. The
set of all possible locations is denoted by L. We denote by
ρ : L × L → [0,+∞), the time required to travel between
two locations.An allocation of tasks to agents is denoted by
a n × m × k matrix X where entry xijk is the fraction of
sub-task vkj that is assigned to agent ai.

Agents can only perform a single sub-task at a time and
utilize only one skill. Let Mi be the number of sub-tasks,
agent ai is allocated to. The schedule of ai is denoted by σi
and it contains a sequence of Mi triplets (vkj , st, ft) specify-
ing the skill that is being performed on a specific sub task,
and the start and end time for applying that skill by the agent,
respectively. Multiple agents can share a single sub-task. The
amount of time an agent must spend on the task is equal to its
allocated fraction of the workload ft− st = xijkw

k
j .

The utility that agents derive from applying a skill to some
task depends on the number of agents q ∈ N that handle it
simultaneously. It is denoted by the non-negative capability

function, Cap(vkj , q) . Let d
vkj
q be the time that q agents are

working together on vkj in some solution (schedule), ξ, for

the problem. Thus qd
vk
j

q

wk
j

is the relative part of the mission that
is performed by q agents simultaneously. The initial utility
(inukj ) that can be derived by the agents for completing the

performance of vkj in ξ is: inukj (ξ) =
∑nk

j

q=1
qd

vk
j

q

wk
j

Cap(vkj , q),

where nkj is the limited amount of agents required for han-
dling vkj . The total initial utility for performing all skills of
vj in ξ is inuj(ξ) =

∑
sk∈Sj

inukj (ξ).
The utility derived for completing the performance of task

vj depends also on the soft deadline function δ(vj , t) : V ×
[0,+∞) → (0, 1], which is monotonically non-increasing in
t. Thus, the discounted utility (duj) for task vj , which is
initially handled at time tvj , is: duj(ξ) = δ(vj , tvj )inuj(ξ).

2.2 Dynamic GTAP
The dynamic problem is represented as a sequence of static
problems, each instantiated when a new task arrives. In the
dynamic problem, tasks arise over time. We denote by α(vj)
the time at which task vj is commenced. Thus, the discounted
utility for performing a task is dependent on the task’s start
time: duj(ξ) = δ(vj , tvj − α(vj))inuj(ξ). The current
task (if any) that is being performed by agent ai and the
current skill that it is using, are denoted by cti and csi, re-
spectively. Agents can interrupt the performance of their cur-
rent task. The penalty for task interruption, π(cti,∆wcsicti )
(The full description of the π(vj ,∆wcsicti ) is shown in [Nelke
and Zivan, 2017]), depends on the interrupted task cti and
the amount of workload left for skill csi while abandoning,
∆wcsicti . The total utility derived for vj is thus: Uvj (ξ) =

duj(ξ)−
∑
ai:cti=vj∧vis1 ̸=cti

π(cti,∆w
csi
cti ). Where vis1 is the

first task in agent’s schedule. The total team utility for so-
lution ξ is: SW (ξ) =

∑
vj∈V Uvj (ξ). GTAP can be solved

centrally or distributively. In a centralized implementation,
all information is transferred to a central unit that solves



the problem and propagates the allocation it produces to the
agents. In a distributed implementation, agents solve the
problem using a message passing algorithm.

2.3 Communication Aware GTAP
Previous work on GTAP [Nelke and Zivan, 2017] assumed
that instances of the problem are multi-agent scenarios with
perfect communication among agents, enabling the use of
synchronous algorithms. However, in many realistic task al-
location applications like disaster response, perfect commu-
nication is unrealistic, making it necessary for the design of
algorithms to be communication-aware, i.e., asynchronous al-
gorithms in which the possibility that messages can be de-
layed or lost are considered.

In order to allow the design of such communication aware
algorithms, we extend GTAP to represent communication
disturbances, by using a Constrained Communication Graph
(CCG), that represents the possibly dynamically changing un-
certainty in the communication between agents [Rachmut et
al., 2022]. To represent the communication limitations, in a
CCG, every link of communication between agents (the ver-
texes) is represented by an edge and the constraint on each
edge defines the latency and probability of a message loss.
Formally, for every edge eij in the CCG, tdeij is the function
that represents the delay on eij (i.e., it calculates the time be-
tween when a message is sent and when it is received via edge
eij). In addition, pleij ∈ [0, 1) is the probability that a mes-
sage sent through the communication link represented by eij
is lost.

2.4 Fisher Market Clearing Task Allocation
(FMC TA)

As described in [Nelke and Zivan, 2017], FMC TA is an al-
gorithm for heterogeneous task allocation that can be imple-
mented both in a centralized and distributed manner. The dis-
tributed implementation is by design synchronous. The algo-
rithm is composed of two phases. The first generates the allo-
cation and defines the cooperation among agents. The second
determines the schedule according to which agents will per-
form the sub-tasks allocated to them.

The first phase manipulates a Fisher market clearing
(FMC) algorithm in order to generate the allocation and ad-
hoc coalitions that will perform tasks. This is done using a
matrix aR that is a 3−dimensional matrix of size n×m× l
is generated. Each entry rijk in R represents the personal
utility that agent ai will derive if it will perform sub-task vkj ,
assuming it will start moving towards it and perform the sub-
task when it arrives. If agent ai does not possess skill sk or
task vj does not require it, the value of entry rijk will be zero.
The utility is constructed ignoring the inter-task ordering con-
straints. It does take into consideration the maximum utility
that agents can derive by performing the sub-task (according
to the capability function), a penalty for late execution and
for not completing the current task the agent is performing.
Formally: rijk = δ(vj , ρ(ai, vj))Cap(v

k
j , n

k
j )−

π(cti,∆w
csi
cti ), where the penalty is omitted if cti = vkj .

The Fisher market-clearing allocation can be found dis-
tributively or centrally, using the proportional response algo-
rithm [Zhang, 2011]. In the distributed version, for each task

there is an agent representing it. To differentiate between the
active agents that perform tasks and the agents representing
tasks, we will denote an active agent i by aai and a task agent
representing task vj by taj . Active agents iteratively submit
bids to the task agents regarding specific sub-tasks and are in
turn awarded provisional allocations, which they use to mod-
ify their bids in the next round. Formally, the bid of aai on
sub-task vkj at time t is denoted by bijk(t). The allocation that

is calculated by the task agent taj is xijk =
bijk(t)∑
i bijk(t)

and

the next bid is bijk(t + 1) =
uijk(t)
ui(t)

bijk(t) where uijk(t) =
(xijkrijk) and ui(t) =

∑
j

∑
s uijk(t). The algorithm con-

verges to a Fisher market equilibrium in pseudo-polynomial
time [Zhang, 2011].

In the centralized version, this algorithm can be simulated
by a single machine. There are other algorithms for com-
puting the Fisher market clearing allocation in a centralized
manner, such as the one proposed in [Dean and Nair, 2014].
In the second phase of FMC TA, the sub-tasks allocated to
each of the active agents are scheduled to reflect the spatial
and temporal inter-task and inter-agent constraints. Each aai
orders the sub-tasks allocated to it greedily prioritizing them
according to the ratio between the utility derived from per-
forming them and the required workload (i.e, Bang per Buck).
Using the order of sub-tasks, the active agent aai calculates
the estimated arrival time for each allocated sub-task (vkj ), de-
noted by ti

vkj
. This sequence arrival times constitutes its initial

schedule. Then, aai sends ti
vkj

to taj (for all sub-tasks in σi).
The task agent taj receives, updates and maintains the start
times (tvkj ). If vkj is a shared sub-task, taj then communi-

cates tvkj to all active agents that share vkj . Upon receiving
a tvkj message, aai checks if its individual schedule can be
improved by advancing sub-tasks that are not shared, without
delaying the execution of shared sub-tasks. The result of this
phase is that each active agent holds a schedule of the sub-
tasks allocated to it, in the order that it will perform them.

3 Fisher Market Clearing Asynchronous Task
Allocation (FMC ATA)

The asynchronous version of FMC TA (FMC ATA) was de-
signed to be (and evidently is) robust both to message latency
and message loss. The three major aspects that differentiate
it from FMC TA are: 1) In FMC ATA, agents do not wait
for messages to arrive from all their neighbors in order for
a computation step to begin. On the contrary, each message
received triggers such a computation step. 2) In FMC ATA
the two phases of FMC TA are merged into a single step and
performed simultaneously. 3) In FMC TA (both in the cen-
tralized and in the distributed version), it is assumed that there
is a central entity that is aware of the location and importance
of all tasks present in the scenario and that it propagates this
information to the agents. In FMC ATA, agents dynamically
discover tasks and propagate the relevant information to their
peers.

FMC ATA is a distributed asynchronous algorithm. As ex-
plained for FMC TA, in FMC ATA there are two types of



Algorithm 1 FMC ATA code of Task Agent taj
1: ci← false
2: while not ci:
3: when message m received:
4: bik ← m.bik
5: pk ← calculate price(bk)
6: Xk ← calculate allocation(pk, bk)
7: T kj ← m.ti

vkj

8: t1
vkj
← max(T kj )

9: ci← is price converged(p⃗, ϵ)
10: send messages to all ai ∈ Aj

entities: active agents and task agents. In practice, the role
of a task agent is performed by one of the active agents, e.g.,
the first to identify the task. The communication graph is bi-
partite, i.e., the neighbors of each active agent are only task
agents and vice versa.

Every task agent taj representing task vj , has a local view
⟨Aj , Xj , Bj , p⃗, T j⟩ where Aj = {ai ∈ A|Si ∩ Sj ̸= ∅} is a
set of active agents that can apply at least one skill as part of
the performance of vj and derive positive utility (i.e., neigh-
boring active agents), Xj

|Aj |×|Sj | and Bj|Aj |×|Sj | are matri-
ces of allocations and bids of neighboring agents to the re-
quired skills of the task vj . The p⃗ is a vector of prices where
|p⃗| = |Sj | and T j|Aj |×|Sj | is the matrix of the earliest times
that the agents in Aj are able to perform the sub-tasks. The
price for each sub-task is the sum of the latest bids for this
task that arrived from each of the active agent neighbors.
Each message sent from aai to the taj includes
⟨aai, taj , sk, bidik, tvkj ⟩, where aai and taj indicate the
sender active agent and the receiving task agent, bidik is the
bid of aai for utilizing skill sk and tvkj is the earliest time that
aai can perform the sub-task.

Algorithm 1 presents the actions of task agent taj when
handling incoming messages. First, for each new message,
matrix B is updated with the new bid bik (line 4). Next, the
prices for all skills are calculated by pk =

∑
i∈A bik in p⃗ (line

5); and new allocations in Xk are determined by xik = bik
pk

(line 6). Lines 7 and 8 refer to the scheduling process, which
is integrated into a single iterative computation (in contrast to
FMC TA, where the scheduling was performed in a separate
step). The time tvkj is updated in T j and the earliest time
that allocated agents to sub-task can perform concurrently,
t1
vkj

, is updated with the max time in the row T jk . The task
agent’s algorithm runs until the prices for all skills converge,
∀pk ∈ p⃗|∆pk < ϵ (in our experiments we used ϵ = 10−5).
Once they converge, a convergence indicator ci is updated
(line 9). Finally, messages are sent to each aai ∈ Aj with the
up-to-dated allocations xik ∈ X , the earliest sharing time t1

vkj

and the convergence indicator ci (line 10).
Every active agent aai also has a local view

⟨V i, Ri, Xi, i⃗, T 1σi⟩ where V i is a set of neighboring
task agents that aai is aware of. Ri|V |×|Si| is the reward

matrix in which every entry rvkj specifies the expected utility
derived by aai for applying a skill sk for performing task
vj , and Xi

|V |×|Si| is the allocation matrix that specifies
the portion of workload that aai is allocated for each such
combination of skill and task. c⃗i indicates whether each
neighboring task agent has converged where

∣∣∣c⃗i∣∣∣ =
∣∣V i∣∣;

and T 1
|V |×|Si| consists of the earliest shared execution times.

σi is the current schedule of agent ai. There are two types
of messages that active agent aai can receive: a ”handshake”
message HSM and a standard message SM . The ”hand-
shake” message contains initial information regarding new
task vj discovered by one of the agents. This type of message
allows tasks to be asynchronously detected by the active
agents. The standard message includes the dynamic changing
information throughout the execution of the algorithm (as
described in Algorithm 1 line10)

Algorithm 2 presents the active agent aai actions when re-
ceiving messages. First, the agent distinguishes between the
two types of messages, and reacts accordingly. If the message
type is aHSM , the new task vj is added to the set V i and the
personal utility rjk is calculated for each of the skills that aai
has and vj requires (as described in Section 2.4)(line 5-6). If
the message type is a standard message (i.e., the task already
exists in V i): Xi is updated with xik, convergence vector
indicator c⃗i is updated with cij , and the earlier shared exe-
cution time t1

vkj
is updated in T 1 (lines 8). After updating its

local view, the agent proceeds to re-calculate its bids as fol-
lows: bjk =

rjk∗xjk∑
j′,k′ rj′k′∗xj′k′

. For new tasks, for which there
is not yet an allocation in the agent’s local view, we assume
xjk = 1 (lines 9). The following steps of the active agent’s al-
gorithm are equivalent to the second phase in FMC TA. The
active agent calculates its own schedule only for old tasks.
The initial schedule is determined by sorting all allocations
to tasks in Xi (the tasks that were allocated to active agent
aai) according to their Bang per Buck i.e., rijkxijk∑

xijz∈xi
rijzxijz

(line 10).
According to initial schedule the active agent’s arrival time

for each of the tasks allocated to it is calculated. The calcu-
lation of the arrival time to the first task considers only the
travel time. The calculation of the arrival times to the rest of
the tasks allocated to it takes into consideration in addition to
the travel time, the time that the active agent spend perform-
ing previous tasks (line 11). Then, for every sub-task vkj in σi

it checks if the time t1
vkj
∈ T 1 is larger than the time that was

scheduled for the allocation, it tries to promote in the queue
tasks where sharing is not required; and the final time ti

vkj
of

the arrival to task is determined (lines 12). Finally, each aai
sends messages to all neighboring task agents in V i, with the
updated bids, bjk, and its arrival time ti

vkj
, as it appears in the

up-to-date schedule σi(line 13).

4 Experimental Design
To investigate the performance of FMC ATA, we used a dis-
tributed asynchronous simulator, in which agents were im-



Algorithm 2 FMC ATA code of Active Agent aai

1: V i ← ∅
2: while not tasks converged(⃗i):
3: when message received:
4: if HSM received:
5: add task vj to set V i
6: rjk ← calculate r(vj , sk)
7: else:
8: update local view(m.xjk,m.icj ,m.t

1
vkj
)

9: Bi ← calculate bids(Ri, Xi)
10: σi ← create initial schedule(Xi, V i)
11: calculate start and end times(σi)
12: check if tasks can promoted(σi)
13: send messages to all vj ∈ V i

plemented as Python threads. The simulated environment
was dynamic and included random incoming tasks. In ad-
dition, the simulator allows to examine scenarios with im-
perfect communication by enabling any pattern of message
delays and any probability for message loss. Imperfect com-
munication was simulated according to the method suggested
in [Zivan and Meisels, 2006] and was used in recent work
for communication aware Distributed Constraint Optimiza-
tion Problems (DCOP) [Rachmut et al., 2021]. All messages
sent by agents in the simulator are passed to an abstract mail-
ing agent, which dictates when messages are delivered to
their destination, according to the selected latency pattern or
probability of message loss. The delay is selected in terms of
the number of Non-Concurrent Logic Operations (NCLO),
an independent measure for evaluating the performance of
algorithms performing in asynchronous distributed settings.
NCLO is an independent metric for evaluating the runtime
in simulations of distributed asynchronous algorithms per-
formed on thread-based simulators [Zivan and Meisels, 2006;
Netzer et al., 2012]. The simulator’s code is public and avail-
able1.

In each experiment, we randomly generated 50 different
problem instances. The results presented in the graphs are
an average of those 50 runs. Each scenario in an experiment
included two types of agents, active agents and task agents,
and for each of them, a random geographic location (coor-
dinates x and y) was selected uniformly between 0 and 106.
Each problem instance included active agents with a set of
three unique skills. An active agent was characterized by its
set of skills. The skills for each active agent were selected
randomly with probability 0.5 for possessing each skill. If
the result of the process was that the agent did not possess
any skill, one was selected randomly and assigned to it. All
agents the same consistent speed, a single unit of distance
per NCLO. Each task requires three skills. The value of nkj
(i.e., maximum number of agents required for handling vkj )
was consistent and set to 5. For each skill in a task, the
value of Cap(vkj , n

k
j ) was selected from a uniform distribu-

tion as follows: Cap(vkj , n
k
j ) ∼ U(0, 105). For q < nkj the

1https://github.com/benrachmut/Simulation For Research

value was relative such that Cap(vkj , q) = Cap(vkj , n
k
j )

q
nk
j

.

The workload required (wkj ) was also selected from a uni-
form distribution and was affected by Cap(vkj , n

k
j ) such that

wkj ∼ U(105, 105 + Cap(vkj , n
k
j )).

Throughout the experiments, we investigated a variety of
imperfect communication scenarios, using a CCG graph as
described in section 2.3. We focused on two types of commu-
nication degradation – messages that are lost and messages
that are delayed. The magnitude of latency and the proba-
bility of a message loss were both correlated to the distance
between the location of the agents exchanging information.

We performed two sets of experiments: static and dynamic.
The static experiments demonstrated the convergence process
of the algorithms in the presences of a imperfect communica-
tion. Each static problem instance, included a set of 25 ran-
dom tasks that were present from the start to the end of the
experiment. We examined how the algorithms scale by eval-
uating their performance on problems with different amounts
of active agents (e.g., 20, 40 and 60), we present the average
team utility as a result of the schedule that would have been
produced by each algorithm every 1000 NCLOs. We con-
sidered two versions of the proposed FMC ATA algorithm
in our experiments. The first, FMC ATA task aware, is in-
formed by a central unit of all tasks included in the problem
upon their arrival. The second, FMC ATA, is not dependent
on a centralized entity. Agents discover tasks and inform one
another using handshake messages. We compared those al-
gorithms with the performance of the synchronous FMC TA
as suggested by [Nelke and Zivan, 2017]2.

To investigate the resilience of the distributed asyn-
chronous version of FMC ATA to dynamic events in the
presence of imperfect communication, in comparison with
the centralized implementation of FMC TA [Nelke and Zi-
van, 2017], we generated different instances of the Dynamic
GTAP (as described in subsection 2.2). Each problem in-
stance in these experiments included 60 active agents. 10 ran-
dom tasks were initiated prior to the start of the algorithm’s
performance and another 15 were discovered throughout the
execution of the simulation. The time between the addition of
new arriving tasks (tbt) was randomly selected from an expo-
nential distribution, i.e., tbt ∼ exp(β) where the parameter β
controls the mean time between tasks. We used β = 105 in
our experiments.We consider the execution time of the algo-
rithms and its effect on the team utility measurements.

5 Experimental Evaluation
Figures 1 and 2 present the team utility of the allocations
generated by the different algorithms, as a function of NC-
LOs, when solving static problems. In Figure 1, we present
the results of the algorithms when solving scenarios that in-
clude message latency, taken from a uniform distribution
(tdeij ∼ U(0, UBdij )). Each sub-graph presents a differ-
ent magnitude of latency, i.e., different values for UB. The
type of lines (e.g., dashed or not) indicate the amount of ac-
tive agents. The curves correspond to different versions of

2FMC TA agents are informed by a central unit of all tasks in-
cluded in the problem upon their arrival

https://github.com/benrachmut/Simulation_For_Research


the algorithm. The black line is the average performance of
FMC TA team utility with perfect communication (PC) and
was used a benchmark. It is clear from the results that the
algorithms converge to solutions with similar solution quality
regardless to the latency magnitude. Our results demonstrate
that FMC ATA converges to solutions with similar quality to
the solutions FMC TA converges to. Our analysis indicates
that there is no statistical significance between the algorithms.

Nevertheless, the algorithms differ in their convergence
rate. The convergence rate of FMC ATA task aware, in
which all tasks are known from the beginning of the run
(green curve), is faster in comparison to FMC ATA, in which
agents are required to discover tasks (blue curve). Further-
more, FMC ATA’s convergence rate increases when more ac-
tive agents are present. That can be explained by the decrease
in the agents’ idle time. Message exchange occurs more fre-
quently and agents perform more computations. In compari-
son to FMC TA (red curve), FMC ATA has an improved con-
vergence rate in scenarios with 60 active agents. This happens
despite the fact that FMC TA agents are informed of active
tasks by a central entity. This demonstrates the vulnerability
of the synchronous algorithm to message latency.

In figure 2, we examine scenarios with message loss. Each
sub-graph represents a different probability function, where
the first two sub-graphs are dependent of the distance be-
tween the entities (i.e., P = e−ψdij ) where ψ = 1, 2 re-
spectively. The last graph examines a scenario where the
probability is constant (i.e., independent of the distance be-
tween the entities) and is set on 0.1 such that only 10% of
the messages are expected to arrive to their destination. No-
tice that FMC TA was not included in the experiments where
messages are lost since it deadlocks in such scenarios. Again,
even in radical conditions, where messages are loss, the so-
lution quality of FMC ATA remains consistent. In regards to
the effect of amount of active agents present, we observe that
as the number of agents increases, the convergences rate de-
creases. Since agents in the asynchronous algorithm compute
after each message they receive, message loss does not affect
the agents idle time (with the exception of extreme scenarios
where communication is cut off completely). Therefore, the
convergence rate is simply affected by the complexity of the
problem, i.e., the amount of agents.

FMC ATA is evidently robust to a variety of communica-
tion limitations. However, when communication is close to
perfect, it does converge slower than FMC TA, e.g., when
there is no message loss and message delays are very small,
agents in FMC ATA perform many steps of computation fol-
lowing each message reception. As a result, they send much
more messages, i.e., network load grows, and consequently,
the convergence process slows down.

Figures 3 and 4 present results of experiments where the
algorithms solve dynamic problems, with message delay and
message loss, respectively. These experiments investigate the
conditions in which distributed execution is preferred over
centralized execution. In the distributed version, agents de-
tect arriving tasks, inform each other and adjust their perfor-
mance accordingly, without involving a centralized entity. In
the centralized implementation, all the agents information is
transferred to a centralized entity that computes the agents’

Figure 1: Team utility as a function of NCLOs in static problems.
Message delays sampled from a Uniform distribution.

schedules and informs them of the result. Whenever a new
task is discovered by the agents, they update the central en-
tity, which recomputes and updates the agents with the new
schedules. The shaded areas in each figure represent the es-
timated average error bar, based on the standard deviation of
the team utility.

Since we are interested in the conditions in which dis-
tributed execution is preferred over a centralized implemen-
tation, the results presented are a function of the distance be-
tween the agents and the centralized unit. That is, what is
the quality of the evolving solutions in a distributed scenario,
when the centralized system is placed in different distances
from the active agents. Each sub graph in figure 3 presents
a the results of the algorithms solving problems in scenarios
with a different communication delay pattern, i.e., a different
value for the parameterUB where tdeij ∼ U(0, UBdij ). No-
tice, that since the quality of solution of the distributed imple-
mentation is not dependent on the location of the centralized
entity, the results of the distributed asynchronous implemen-
tation (FMC ATA) in each of the graphs is consistent.

It is apparent from the presented results that when the cen-
tral entity is placed close to the active agents, there is a slight
advantage over the distributed version. This is expected since
there are minor communication requirements by the central-
ized entity performing the centralized algorithm throughout
its execution, in comparison to the repetitive message ex-
change between agents in the asynchronous distributed ver-
sion. Notice that for distributed FMC ATA, the team util-
ity function decreases as the latency magnitude increases (see
the blue curves in the different sub-graphs). This can be ex-
plained by the delay in convergence. The accuracy of the
components used to compute the team utility (i.e., capabil-
ity and soft deadline function) is harmed by delayed infor-
mation delivery. Yet, this effect is much more drastic in
the centralized version, when the central computing entity is



Figure 2: Team utility as a function of NCLOs in static problems
with message loss probabilities sampled from a e−ψdij and constant
probability (0.1).

placed far from the active agents. In such cases the solution
quality decreases and the distributed version is substantially
favourable. Although all messages sent from the agents to the
central computer and back eventually arrive at their destina-
tion, the inconsistency of the information used by the agents,
decreases the quality of solution. The decisions of the cen-
tralized algorithm following dynamic events may arrive late,
and as a result, the actions performed by the agents until the
information arrives are not in line with the problem’s require-
ments and thus, the utility decreases.

The results of a set of experiments, in which the scenar-
ios included messages that were lost, is presented in Fig-
ure 4. The different values of ψ determine the probability
for a message to be lost: pleij = e−ψdij . The solution quality
of FMC ATA remains consistent even when the probability
for message arrival decreases. For centralized FMC TA the
quality of solution is substantially low even when the central
computer is placed in the center of the map (very close to the
active agents). Agents fail to report new information to the
central entity upon the discovery of tasks, and therefore the
central entity does not assign active agents to handle them.

6 Conclusions
FMC TA is an algorithm for solving multi agent task alloca-
tion problems that has been shown to outperform state of the
art centralized and distributed algorithms. However, a num-
ber of major drawbacks prevent it from being used in realis-
tic distributed applications including imperfect communica-
tion and dynamic events. We proposed FMC ATA, a novel
asynchronous distributed algorithm in which agents perform
single phase iterations and are able to detect new events and
adjust their allocation and schedules accordingly. We demon-
strate that FMC ATA is robust to imperfect communication,
and maintains the level of solution quality in a verity of con-
ditions. FMC ATA converges to the same market clearing

Figure 3: Team utility as a function of the central computer’s loca-
tion in dynamic problems, with message delays

Figure 4: Team utility as a function of the central computer’s loca-
tion in dynamic problems with message loss

solution as FMC TA, thus it preserves the solution properties
of FMC TA. Moreover, while FMC TA is not applicable to
scenarios that include message loss, FMC ATA is shows re-
silience in such scenarios. We presented the results of an in-
vestigation of the conditions in which a distributed FMC ATA
is preferred over the centralized implementation.
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