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ABSTRACT
Multi-agent reinforcement learning (MARL) has become increas-
ingly popular, but scaling to large populations of agents remains
an open challenge. On the one hand, centralized training methods,
such as parameter-sharing, address scalability issues when agents
have homogeneous goals. On the other hand, only a few propos-
als concerned heterogeneous agents, which limits their scalability.
This work extends parameter-sharing — an approach that factorizes
multi-agent learning into a single shared policy — to agents with
heterogeneous intrinsic motivations sampled from distributions.
We focus our experiments on a traffic platform where human driver
agents seek to optimize intrinsic motivations, namely, their own
goals. In a context where decentralized baseline training failed to
train ten agents, we show that our proposal allows scaling up to
90 heterogeneous agents on average in less than three minutes.
Furthermore, our approach yields a generic learned policy that can
adapt to new motivation distributions without retraining.
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1 INTRODUCTION
Multi-agent systems (MAS) are a subfield of distributed artificial
intelligence [21]. They constitute an opportunity to model the in-
teractions between several autonomous entities with diverging
information, diverging goals, or both. MAS have become increas-
ingly popular in tackling real-world problems such as smart grids,
the internet of things, robotics, and autonomous driving.

To solve complex problems, researchers often combineMASwith
reinforcement learning (RL), a trial-and-error learning method for
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solving decision-making problems [23]. In multi-agent reinforce-
ment learning (MARL), each agent interacts with an environment
in which other agents can be considered as part [10]. Each agent
aims to learn an optimal policy induced by feedback that rates its
actions, deflects wrong ones, and reinforces good ones; hence, the
name reinforcement learning. Despite growing interest, numerous
challenges, such as non-stationarity, partial observability, and scala-
bility, prevent MARL from becoming a go-to solution. For instance,
scalability prevents large-scale applications involving more than
a dozen agents, because each agent learns a policy via a neural
network, which requires large amounts of computational resources
and memory [16].

The two phases of the MARL learning process are training and
execution. The two can be centralized or decentralized. Decentral-
ization is considered the most realistic way to address real-world
problems; however, centralization mitigates the MARL challenges
in simulated environments. Parameter-sharing (PS) is one of the
most popular centralization techniques. It learns a unique policy for
all agents, reducing the parameter space by a factor of the number of
agents [11]. However, having all agents share the same parameters
can detrimentally affect learning [5]. To the best of our knowledge,
there is no equivalent solution for agents with diverging goals. This
issue prevents the large-scale application of heterogeneous agents
in many real-world problems, such as research on future mobility,
which studies the behavior of autonomous vehicles (AVs) cohabiting
with human drivers in mixed traffic [2, 14]. The latter problem can
be addressed by switching from extrinsic to intrinsic MARL reward
functions [4]. The environment rewards extrinsically motivated
agents, while intrinsically motivated agents reward themselves.
Intrinsically motivated agents are often used to simulate human
populations where each individual is self-interested. For instance,
one may opt for intrinsically motivated agents (drivers) when at-
tempting to reproduce human driver behavior in traffic. We based
our work on the traffic case because we believe that intrinsically
motivated MARL agents can compensate for the lack of "realistic"



human-driven vehicle models, as acknowledged by many authors
[7].

This paper extends PS to heterogeneous intrinsically motivated
agents. In our approach, heterogeneity comes from distributions
of intrinsic motivations influencing agents’ reward functions. We
show that our resulting policy (1) supports large-scale application
with up to 90 agents; (2) correctly discriminates and optimizes
individualities induced by heterogeneous intrinsic motivations, and;
(3) is generic, i.e., the policy successfully adapts to changes in the
intrinsic motivation distribution without the need for retraining.

The remainder of this paper is organized as follows. Section 2
presents the MARL challenges and parameter-sharing. Section 3
details our proposal based on the GENEric Parameter-sharing for
Intrinsically motivated agents (GENEPI). Then, Section 4 evalu-
ates the results based on a road traffic platform and validates our
approach. We also focus on scalability and genericity problems.
Finally, Section 5 concludes the paper and provides perspectives.

2 BACKGROUND AND RELATEDWORK
We briefly define MARL agents (2.1). Then, we introduce different
MARL approaches into a taxonomy (2.2) and underline their main
challenges (2.3). Finally, we focus on parameter-sharing (2.4).

2.1 Definition
Formally, MARL is defined as follows [10]. At regular time step
𝑡 , a set of agents I observes the state 𝑠𝑡 ∈ S of the environment
and selects actions 𝑎𝑖,𝑡 ∈ A. At the next time step 𝑡 + 1, the agents
receive rewards 𝑟𝑖,𝑡+1 ∈ R according to their reward functions 𝑅𝑖 ,
observe the next state 𝑠𝑡+1 ∈ S, and repeat the cycle (Figure 1a).
For the sake of simplicity, we remove the agent notation 𝑖 in all the
following equations.

Depending on the application, MARL reward functions 𝑅 can
be extrinsic or intrinsic [4]. The environment rewards extrinsically
motivated agents while intrinsically motivated agents reward them-
selves (Figure 1b). Often, one opts for intrinsically motivated agents
when the underlying problem concerns simulating a self-interested
(heterogeneous) human population.

Agents aim to play an optimal action selection policy 𝜋 : S ×
A → [0, 1] which provides the probability of selecting each action
in a given state. An optimal policy 𝜋∗ seeks to maximize the dis-
counted sum of the rewards obtained over an episode, denoted by
𝐺𝑡 (Equation 1),

𝐺𝑡 =
∑︁

𝑘=𝑡+1
𝛾𝑘 · 𝑟𝑡+𝑘+1 (1)

where the discount factor 𝛾 ∈ [0, 1) bounds this sum and is a trade-
off between short and long-term rewards.

A state-action value function𝑄𝜋 (𝑠, 𝑎) (Equation 2) estimates the
expected future rewards and induces the agent’s decisions towards
an optimal policy 𝜋∗ = max𝑎 𝑄𝜋 (𝑠, 𝑎).

𝑄𝜋 (𝑠, 𝑎) = E𝜋 [𝐺𝑡 | S𝑡 = 𝑠,A𝑡 = 𝑎] (2)

Since, in some environments, mapping the whole state-action
space is intractable, MARL approximates the value function𝑄 (𝑠, 𝑎)
through a low-dimensional representation: a deep neural network.

2.2 MARL taxonomy
MARL algorithms fall into three categories depending on how
agents learn the policy: value-based, policy-based, or actor-critic
[23].

Value-based algorithms implicitly learn a policy by estimating
the value of the actions 𝑎 ∈ A in a given state 𝑠 ∈ S according
to the recursive Equation 3. The value of a state-action pair at the
current time step 𝑡 equals the sum of the reward obtained at 𝑡 plus
the discounted Q-value of the next time step 𝑡 + 1 if the agent
acts optimally 𝑎𝑡+1 = max𝑎 𝑄 (𝑠𝑡+1, 𝑎𝑡+1) according to its current
estimation of 𝑄 (𝑠, 𝑎):

𝑄 (𝑠𝑡 , 𝑎𝑡 ) = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾 ·max
𝑎

𝑄 (𝑠𝑡+1, 𝑎𝑡+1) (3)

The higher the value of 𝑄 (𝑠, 𝑎), the better the action. Exploring
the entire state-action space would give the exact value of 𝑄 (𝑠, 𝑎)
and thus the optimal policy, but this is impossible in large-scale en-
vironments and continuous state-action spaces. In the latter cases,
the state-action value 𝑄 (𝑠, 𝑎) is approximated during the explo-
ration process, which can bias its value when the exploration is
insufficient. Some value-based algorithms save past experiences
into a replay buffer, improving sample efficiency, i.e., the ability of
an algorithm to get the most out of every sample.

Policy-based algorithms, instead, explicitly learn a policy that
maps the probability distribution over possible actions 𝜋 : 𝑠 → 𝑎.
Consequently, an agent can learn a stochastic policy stronger than
a deterministic one, especially in competitive multi-agents where
deterministic behaviors are easily predictable. Nonetheless, these
methods are less sample efficient and suffer from high variance
because the mapping of 𝜋 depends on which state-action the policy
explores.

Actor-critic algorithms take advantage of the preceding algo-
rithms while alleviating their weaknesses. A critic maintains a value
approximation 𝑄 (𝑠, 𝑎) that appraises and induces the actor’s de-
cisions 𝑎. Numerous actor-critic algorithms have been proposed,
such as A3C, DDPG, PPO, and TRPO [15, 17, 19, 20].

In this work, we choose D4PG, an actor-critic algorithm that
has proven its efficiency in continuous control [1]. D4PG esti-
mates 𝑄 (𝑠, 𝑎) via a distributional representation of the possible
reward outcomes. In this algorithm, the critic stores transitions
(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) in an experience replay buffer (ERB) to stabilize
the learning process, whereas the actor explores the state space to
map the environmental transitions better.

Regardless of the chosen algorithm, MARL raises different open
challenges, as presented below.

2.3 Challenges
Many challenges prevent MARL from being a go-to approach.
Among themost cited in the literature, we list four: non-stationarity,
curse of dimensionality, partial-observability, and heterogeneity.

Single-agent RL algorithms assume a Markovian environment,
i.e., with a fixed state probability distribution [23]. However, MARL
breaks this property because the agents continuously adapt to each
other during the learning process. Consequently, the environment
becomes non-stationary, which can hinder or prevent the conver-
gence of the agents towards an optimal policy.



(a) Extrinsic rewards (b) Intrinsic rewards

Figure 1: Reinforcement learning

To act optimally according to its goals, an agent should observe
as much information as possible, including the entire environment
and the agents’ states. However, such information is rarely available
in practice. Even if it were the case, processing this information
with many agents would be too computationally costly because the
state space grows exponentially with the number of agents.

To overcome the resulting curse of dimensionality, one can re-
strict the agents’ observations to a reduced state space of the envi-
ronment. This partial observability can be extended to the agent
space so that agents can only observe some of their neighborhood.
A designer must balance partial and full observability; otherwise, it
will hinder either scalability or agent behavior.

In MARL, the agents are either homogeneous or heterogeneous.
Homogeneous agents are similar, share the same goals, and act in
the sameway. Conversely, heterogeneous agents may have different
goals, knowledge, skills, or action spaces. This diversity impedes
learning because agents must adapt to a broader range of possible
behaviors and can rarely determine and anticipate their neighbors’
goals.

Owing to these challenges, there is no convergence guarantee
in MARL, except in simplistic scenarios [6]. Therefore, most stud-
ies narrow the number of learning agents to a dozen and empiri-
cally check for convergence [16]. Consequently, approaches such
as parameter-sharing have been proposed to mitigate scalability
issues.

2.4 Parameter-sharing
Two phases compose MARL: training and execution; the two can be
centralized or decentralized. Centralization often improves scala-
bility by sharing extra information between agents, whereas decen-
tralization requires agents to learn and act independently. Lowe et
al. [16] introduced the centralized training decentralized execution
(CTDE) method, which overcomes the shortcomings of the fully-
centralized and fully-decentralized approaches. During the training
phase, agents share additional information to alleviate scalability
issues and discard them during the execution phase. The CTDE
scheme includes two popular strategies, namely centralized critic
decentralized actor (CCDA) and parameter-sharing (PS), that can
be used depending on the nature of the agents.

Agents with heterogeneous goals can adopt a centralized critic
decentralized actor (CCDA) scheme [16]. In CCDA, all agents feed
a central critic with extra information to improve the assessments

(a) Centralized training (b) Decentralized execution

Figure 2: Parameter-sharing with actor-critic

of actors. During execution, the critic is discarded; then, the agents
act in a decentralized way.

When agents are homogeneous, i.e., share common goals, one
can opt for parameter-sharing (PS) [11]. PS mitigates the curse of
dimensionality by centralizing agents’ experiences and factorizing
policy training by using a unique shared neural network. In other
words, PS reduces the parameter space by a factor of the number of
agents |I |, which lowers the training time to tractable levels and
alleviates scalability issues. Once learned, each agent receives a
copy of the learned policy and acts in a decentralized way (Figure
2).

PS was initially designed to optimize the learning of homoge-
neous agents with the same reward functions. However, only a
few authors have attempted to extend PS to agents with hetero-
geneous goals [5, 12, 24]. Here, we introduce the closest attempts
we found on Scopus, Web of Science, and IEEE Xplore using the key-
words multi-agent reinforcement learning, parameter-sharing, and
heterogeneity.

The first attempt to extend PS to heterogeneous agents was
by overloading the observation space with a binary index indi-
cating which of the two goals between lane-following and over-
taking, an agent must optimize [12]. However, the binary index
prevents agents from simultaneously optimizing more than two
goals, thereby diminishing heterogeneity. The authors trained 6
agents and performed tests with up to 15 agents. For lane-following,
collisions were observed approximately 11% times.

The second method learns multiple PS policies and partitions
agents into roles according to their goals, where a role matches a
PS network [5]. Since this method automatically determines the
number of roles, i.e., the number of neural networks, the parameter



space can grow and impede scalability. The authors trained up to
200 agents partitioned into 4 different roles.

The third method learned an actor-critic algorithm. Agents share
the same critic, but each learns a policy to prevent the agent’s
personality from being absorbed by a shared policy [24]. Although
this approach prevents PS from reducing the variance between
agent policies, it is still poorly scalable. Additionally, when one
wants to add more agents with different goals, this framework
requires retraining, because each agent learns a neural network.
The authors simultaneously trained up to 15 agents.

By reducing heterogeneity or scalability, none of these extensions
equals the original PS performance for agents with heterogeneous
goals. Thus, we propose an alternative extension of PS to overcome
the scalability issue for intrinsically motivated agents. Our pro-
posal neither impedes scalability nor heterogeneity compared to
the reviewed approaches.

3 OUR APPROACH: GENEPI
In this section, we present our approach called GENEPI. Thus,
we describe the global view in (3.1). From this global view, we
then characterize three main practical elements: (i) the context of
the traffic environment (3.2), (ii) the neighborhood (3.3), and (iii)
intrinsic motivations (3.4).

3.1 Global view
Recall that the core objective of our proposal is to learn a GENEric
Parameter-sharing for intrinsically motivated agents (GENEPI).
Figure 3 illustrates the proposed approach. It consists of two steps:
(i) initialization and (ii) training.

At the initialization step, agents (Agent 1, . . ., Agent 𝑁 ) draw
motivations that determine their reward functions. The first mo-
tivation encourages agents to reach their desired speed, whereas
the second prevents them from taking high risks. We further detail
these Gaussian motivation distributions in Section 3.4.

During the training (second and last step), agents observe the
environment, build their ego-centered observations, and process
them to the shared policy. Then, agents act according to the actions
returned by the shared policy and reward themselves depending on
their new observations and intrinsic reward functions. The shared
policy produces different output behaviors when it appropriately
learns to discriminate between agents’ intrinsic motivations passed
as input.

Thus, GENEPI takes three types of inputs: (1) environment from
the agent’s viewpoint, (2) neighboring agents from an agent’s view-
point, and (3) motivations influencing agents’ reward functions.

3.2 Our context: traffic environment based on
ArchiSim

We base our agent on the ArchiSim traffic simulator [8], which
relies on psychologist studies of drivers’ behaviors [9]. ArchiSim
divides the road into control zones, whose width adapts to the
velocity of the driver to ease the reproduction of complex behaviors
and, more specifically, to anticipate ongoing flow variations. A zone
indicates the average speed of the drivers within or the speed limit
when it is empty.

Figure 3: Initialization and training of GENEPI

In our case, ego-centered observations of the environment in-
clude the control areas of the driving agent’s current lane because
we only consider longitudinal driving in this straightforward prob-
lem, as Figure 4 illustrates. Each area, whose width depends on
the ego-vehicle (in red) velocity, aggregates data and computes the
average speed of the vehicles within.



Figure 4: Control areas from an agent’s perspective

In our experiments, agents aim to drive along a road while
accumulating rewards. We set random initial velocities 𝑣𝑖𝑛𝑖𝑡

𝑖
∈

[28, 36]m/s at the beginning of each episode. The road is two kilo-
meters long, which is sufficient to observe behavioral changes. Note
that the more vehicles that train simultaneously, the less distance
they will have to travel on average.

3.3 Neighborhood
Observing the environment partially improves the scalability. Addi-
tionally, in our application, we assume that it is also a "more realistic
way" to reproduce the concept of bounded rationality [18], the fact
that humans can be distracted and lack information and time to
act optimally. A partial observation includes the time headway and
time to collision of the two preceding vehicles from the vehicle in
front of them (Figure 5). The four resulting variables help an agent
forecast the behavioral changes of the preceding vehicles induced
by incoming traffic conditions.

Figure 5: Observation of the neighborhood

3.4 Intrinsic motivations
As the introduction states, we aim to simulate intrinsically moti-
vated driver agents. Starting from a straightforward example, in
which agents can only move longitudinally, we assume that drivers
would like to reach a compromise between (i) driving at their ve-
locity 𝑅velocity and (ii) maintaining safe distances 𝑅safe. An agent
can only accelerate or decelerate via continuous control 𝑎.

The first reward 𝑅velocity encourages an agent to reach its desired
speed 𝑣∗

𝑖
(Equation 4). An agent obtains the maximal reward when

its current speed 𝑣𝑖 equals its desired speed 𝑣∗
𝑖
. An agent computes

its desired velocity as the deviation from the speed limit of the road
drawn from a Gaussian distribution: 𝑣∗

𝑖
= speed limit × N(1, 0.03).

𝑅velocity =

(
min(𝑣𝑖 , 𝑣∗𝑖 )
max(𝑣𝑖 , 𝑣∗𝑖 )

)2
(4)

The second reward function 𝑅safe discourages an agent 𝑖 from
closing with the leader vehicle 𝑗 (Equation 5). The function punishes
an agent 𝑖 when the evaluated risk 𝐸𝑅(𝑖, 𝑗) exceeds its accepted risk
threshold 𝛿𝑖 , drawn from a Gaussian distribution 𝛿𝑖 ∼ N(1.5, 2). We
consider that 𝐸𝑅(𝑖, 𝑗) (Equation 6) comes from a previous study ini-
tially proposed by [13]. This author identified which time headway
Δ𝑡 (𝑖, 𝑗) and time to collision Δ𝑇𝑇𝐶 (𝑖, 𝑗) trigger the brake decision
in car-following situations.

𝑅safe =

{
𝛿𝑖 − 𝐸𝑅(𝑖, 𝑗) if 𝐸𝑅(𝑖, 𝑗) > 𝛿𝑖

0 else
(5)

𝐸𝑅(𝑖, 𝑗) =
(

1
Δ𝑡 (𝑖, 𝑗)

+ 4
Δ𝑇𝑇𝐶 (𝑖, 𝑗)

)
(6)

Finally, we weight both reward outcomes equally 𝑅 = 𝑅safe +
𝑅velocity.

4 EXPERIMENTS AND RESULTS
We present three criteria for the evaluation of GENEPI (4.1) and
their results (4.2).

4.1 Evaluation of experiments
We perform experiments with the D4PG algorithm to assess three
criteria of our approach: scalability, diversity, and genericity. These
three criteria are essential for validating the advantages of GENEPI
compared to a decentralized baseline [3]. The only difference from
the baseline is that GENEPI adopts parameter-sharing.

Experiment 1 based on the scalability criterion. In the first ex-
periment, we compare the convergence time of GENEPI with a
decentralized training approach for different numbers of agents.
We expect GENEPI to outperform the decentralized baseline.

Experiment 2 based on the heterogeneity criterion. In the second
experiment, we ensure that heterogeneity is preserved alongside the
use of PS. We expect that the GENEPI policy network will correctly
discriminate agents’ intrinsic motivations and learn appropriate
behaviors accordingly.

Experiment 3 based on the genericity criterion. In the third ex-
periment, we check the generic property of GENEPI by executing
the learned policy with a distinct motivation distribution from the
learned policy. We expect our agents to act appropriately in an
unknown motivation distribution.

Table 1 shows the hyperparameters of these experiments. Note
that we use a larger learning rate in our framework because the
diversity of experiences brought by the agents during the train-
ing stabilizes the learned policy. The size of the replay buffer is
sufficiently large to contain transitions (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) from differ-
ent training stages, which helps map the state-action space with
rewards in the long term. Among the few neural network architec-
tures that have been specifically studied for reinforcement learning,
we chose the D2RL architecture, which is derived from Sinha et
al. [22], who identified an appropriate network architecture that
performs well in RL problems.

4.2 Results
This subsection details the scalability, heterogeneity, and genericity
results. Subsequent results are obtained using an NVIDIA RTX 3080
TI.

Scalability. We evaluate the scalability of a decentralized baseline
and GENEPI. Thus, for these two approaches, we investigate 3, 6,
10, 30, 60, and 90 learning agents. We check convergence every
minute. When all the agents accumulate at least 90% of the rewards



Table 1: Hyperparameters

Parameter Value
Optimizer Adam
Learning rate (GENEPI) 1𝑒 − 3
Learning rate (decentralized) 3𝑒 − 4
Buffer size 5𝑒 + 4
Discount factor 𝛾 0.85
Batch size 64
Neural architecture D2RL

over an episode, we consider that they converge. This score implies
that no accidents occurred during the testing phase. After twenty
hours of training without convergence, we halt the learning process
and assume that the agents fail to converge. Thus, each experiment
is (randomly) repeated five times, with different neural network
initializations and vehicle starting positions. We then measure the
average convergence time and its standard deviation (Table 2).

Table 2: Average duration and deviation (in minutes) for the
training until convergence. The * symbol denotes the non-
convergence

# agents GENEPI Baseline
3 3.4 ± 1.5 14 ± 5
6 2.6 ± 0.5 28 ± 26
10 2 ± 0.6 *
30 1.6 ± 0.8 *
60 2.2 ± 1.2 *
90 2.6 ± 0.8 *

The results show that the decentralized baseline fails to converge
in less than twenty hours when more than six agents learn. We
attribute this failure to non-stationarity problems since, in our
scenario, agents struggle to adapt to the behaviors of other vehicles,
which are continually changing during the learning process.

As expected, the GENEPI approach converges faster than the
decentralized baseline. GENEPI’s convergence time remains almost
constant (2.4 minutes on average), regardless of the number of
learning agents. This consistency is probably a consequence of
using PS, which keeps the parameter space size constant, what-
ever the number of agents trained. We do not test whether this
consistency remains valid for a more significant number of agents.
Nevertheless, conducting more than five tests could refine this
average convergence time.

Gupta [11] observed that PS provided a natural curriculum for
cooperative agents. Our results show that this observation is also
valid in a mixed setting. In decentralized training, each agent acts
according to a randomly initialized neural network, which leads to a
broader heterogeneity of behaviors among agents at the beginning
of training. Conversely, at initialization, agents act homogeneously
with PS because they share the same parameters, providing a natural
curriculum. We can observe this phenomenon on the convergence
of GENEPI against the baseline (Figure 6). Before the training, at

Figure 6: Convergence time of the baseline against GENEPI

the initialization (time=0s), the worst average reward that agents
acting through GENEPI receive is greater than −0.4, while the value
down to −1 for the baseline.

In the decentralized approach, agents strive to adapt to con-
stantly changing self-interested behaviors, whereas, in the cen-
tralized method, they learn to generalize over a possible set of
behaviors.

Now that we have shown the scalability of GENEPI against
the decentralized baseline, we narrow the number of agents to
five in the following experiments to provide more straightforward
examples of GENEPI’s heterogeneity and genericity.

Heterogeneity. To assess the behavioral heterogeneity of our PS
agents, we track the evaluated risk taken over a simulation for all
agents. We endow each agent with a higher preferred speed than
the one in the preceding position, forcing the agents to reach their
risk threshold to accumulate maximum rewards.

Figure 7 shows the estimated risk four agents took over time.
Agents 0, 1 and 2 reach their risk thresholds, respectively 𝛿0 = 2,
𝛿1 = 1.8, 𝛿2 = 1.6, whereas Agent 3 is still reaching its threshold
(𝛿3 = 1.4). The PS policy correctly differentiates agents’ motivations
and learns diverse behaviors accordingly. The results confirm that
PS can be applied to intrinsically motivated heterogeneous agents.



Figure 7: Evaluated risk over time of four vehicles

Genericity. Genericity refers to the ability of our learned policy
to perform well when simulating agents with intrinsic motivations
that differ from those learned. In other words, the agents’ behaviors
can be changed without retraining the network.

Initially, the agents learn their accepted risk threshold 𝛿𝑖 ∈ [1, 2].
When we change this distribution to 𝛿𝑖 ∈ [2, 3] without retraining
the policy and observe that agents behave correctly according to
the new distribution and reach a risk threshold in the range [2, 3]
instead of the [1, 2] learned range (Figure 8).

Figure 8: Evaluated risk over time without retraining

As expected, GENEPI is scalable, generic, and preserves hetero-
geneity.

5 CONCLUSION AND DISCUSSION
This work proposes an approach to mitigate scalability issues in
multi-agent reinforcement learning (MARL) with heterogeneous
intrinsic motivations. This approach extends parameter-sharing,
a centralized training approach that learns a shared policy for ho-
mogeneous agents, to a heterogeneous case. We call our method
GENEPI for GENEric Parameter-sharing for intrinsically motivated
agents.

We compare GENEPI’s scalability with a decentralized baseline
for a simple road traffic use case. While the latter fails to converge
when ten agents simultaneously learn, GENEPI successfully scales
up to 90 agents in less than three minutes, implying that GENEPI
correctly discriminates agents’ intrinsicmotivationswithin a shared
policy and that no accidents occurred. Moreover, we show the gener-
icity of our method, meaning that we can train and test a shared
policy on distinct motivation distributions without negatively af-
fecting agents’ behaviors.

As mentioned earlier, the only limitation of our proposal is that
it only applies to intrinsically motivated agents, which typically re-
flects applications where one wants to simulate human populations,
such as drivers, cyclists, and pedestrians. Thus, our proposal can
contribute to simulating large populations of intrinsically motivated
human drivers, which the literature needs to improve further.

In future work, we plan to assess the robustness of GENEPI
in more complex traffic scenarios involving additional intrinsic
motivations that not all agents would share. For instance, a merging
scenario in which some drivers yield while others do not.
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