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ABSTRACT
Regret minimization is a key component of many algorithms for
finding Nash equilibria in imperfect-information games. To scale
to games that cannot fit in memory, we can use search with value
functions. However, calling the value functions repeatedly in search
can be expensive. Therefore, it is desirable to minimize regret in
the search tree as fast as possible. We propose to accelerate the
regret minimization by introducing a general “learning not to re-
gret” framework, where we meta-learn the regret minimizer. The
resulting algorithm is guaranteed to minimize regret in arbitrary
settings and is (meta)-learned to converge fast on a selected distribu-
tion of games. Our experiments show that meta-learned algorithms
converge substantially faster than prior regret minimization algo-
rithms.

KEYWORDS
meta learning, regret minimization, algorithmic game theory, online
learning

1 INTRODUCTION
Regret minimization is a general, online convex optimization con-
cept, where an agent repeatedly makes decision against an un-
known environment [38]. Regret measures the difference between
the accumulated reward and the reward that a best time-independent
action would have received in hindsight. An algorithm is called
regret minimizing if its regret grows sub-linearly — the average
regret converges to zero [3]. Regret minimization has an elegant
and important connection to games. If all players employ a regret
minimizer, then their average strategy converges to a coarse cor-
related equilibrium [16, 18]. More importantly, in two-player zero-
sum games, the average strategy converges to a Nash equilibrium.
Regret minimization has become the key building block of many
algorithms for finding Nash equilibria in imperfect-information
games [6, 8, 10, 21, 27] (just to name a few).

To converge to an equilibrium, it is desirable to drive the average
regret down as quickly as possible. In strictly adversarial settings,
the convergence can be no faster than 𝑂 (𝑇 −1/2) [23]. In self-play
setting, faster convergence is possible and some algorithms prov-
ably enjoy 𝑂

(
𝑇 −1

)
. But in practice, the algorithms are much faster

than the worst-case bound suggests. For example, CFR+ [34] es-
sentially solved limit texas holdem poker with tabular self-play —
one of the largest imperfect information games to be solved to this

day [5]. It required only 1, 579 iterations to produce the final strat-
egy, orders of magnitude less than the theoretical bound suggests.
However, scaling to larger games requires using value functions,
as the games are cannot fit in memory.

Value functions assume adversarial strategies in the subgames.
Because of this, the rate of convergence in the search tree tends
to be slow and closer to the adversarial bound than the self-play
bound. Additionally, calling the value functions is expensive, as
they are typically represented by a large neural network.

To accelerate the regret minimization, we turn to the meta-
learning paradigm, namely a variant of learning to learn [1]. We
learn a small neural network that serves as the regret minimizer
and train it directly on a distribution of games of interest.

We start with matrix-form games and show that our learned
algorithms greatly outperform the previous methods. We then turn
our attention to sequential decision games [20]. In these settings,
one can decompose the overall regret to individual (counterfactual)
regret for the information states [14, 39]. Our approach again sig-
nificantly outperforms previous state-of-the-art methods — on the
very games they were designed to excel at.

While the meta-learned algorithm can produce extraordinary
fast convergence for the distribution of games we train on (e.g.
poker games), it can be at the cost of performance (or even lack
of convergence) for the out-of-distribution games. To provide the
convergence guarantees, we introduce meta-learning within the
predictive regret framework [15]. Predictive regret minimization
provides convergence guarantees regardless of the prediction, while
a better prediction guarantees faster convergence – a perfect pre-
diction results in zero regret [15]. This allows us to meta-learn
the predictions for the distribution in question, ensuring conver-
gence guarantees for any game. This results in an algorithm that
combines the best of the worlds: fast convergence for the class of
games in question while providing strong convergence guarantees
elsewhere.

2 BACKGROUND
An online algorithm𝑚 for the regret minimization task repeatedly
interacts with an environment through 𝑑 available actions. The
environment can be influenced by an adversary, or even unknown.
At each step 𝑡 , the algorithm specifies a strategy 𝝈𝑡 from a prob-
ability simplex Δ𝑑 and observes the subsequent reward 𝒙𝑡 ∈ R𝑑
coming back from the environment. A sequence of such strategies
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and rewards, up to a horizon 𝑇 , is

𝝈0 → 𝒙1,𝝈1 → 𝒙2,𝝈2 → · · · → 𝒙𝑇−1,𝝈𝑇−1 → 𝒙𝑇 . (1)

The instantaneous regret experienced in a step of the sequence is

𝒓 (𝝈 , 𝒙) = 𝒙 − ⟨𝝈 , 𝒙⟩1,

and the cumulative regret over the entire sequence is

𝑹𝑇 =

𝑇∑︁
𝑡=1

𝒓 (𝝈𝑡−1, 𝒙𝑡 ).

We say the algorithm is a regret minimizer, if the external regret
𝑅ext
𝑇

= max
𝑎∈{1,...,𝑑 }

∑𝑇
𝑡=1 𝒓 (𝛿𝑎, 𝒙𝑡 ) grows sublinearly in 𝑇 , where 𝛿𝑎 is

a Kronecker delta. We will use the online algorithm in two-player
zero-summatrix games and sequential imperfect-information games.
We refer the reader to [20] for a more formal treatment of these
games, which we omit for brevity. We employ the online algorithms
at each state a player 𝑖 ∈ {1, 2} can’t distinguish (i.e. at each infos-
tate), as in prior work on counterfactual regret minimization [40].

In a sequential game, the players take turns making decisions at
each infostate, until they arrive at a terminal state 𝑧 where the player
receives its reward 𝑢𝑖 (𝑧) ∈ R. We denote the maximum difference
in rewards as Δmax = max𝑧 𝑢𝑖 (𝑧)−min𝑧 𝑢𝑖 (𝑧). The expected reward
(in the whole game) is 𝑢𝑖 (𝝈) = E𝑧∼𝝈 𝑢𝑖 (𝑧), where 𝝈 = (𝝈1,𝝈2) is a
strategy profile of all players at all infostates.

The best response to the other player’s strategy 𝝈-𝑖 is br (𝝈-𝑖 ) ∈
argmax𝝈𝑖

𝑢𝑖 (𝝈𝑖 , 𝝈-𝑖 ). A profile is a Nash equilibrium 𝝈∗, if the indi-
vidual player strategies are mutual best responses. The game value
𝑢∗ = 𝑢1 (𝝈∗) is the utility player 1 can achieve under a Nash equilib-
rium. Finally, the exploitability of player 𝑖 strategy (i.e. the gap from
a Nash equilibrium) is expl𝑖 (𝝈𝑖 ) :=

[
𝑢𝑖 (𝝈∗) −min𝝈-𝑖 𝑢𝑖 (𝝈𝑖 ,𝝈-𝑖 )

]
.

3 PRIORWORK
From the very dawn of the field, search with value functions was a
fundamental concept of computer games research. Turing’s chess
algorithm from 1950 was able to think two moves ahead [12], and
Shannon’s work on chess from 1950 includes an extensive section
on evaluation functions to be used within a search [32]. Samuel’s
checkers program from 1959 already combines search and value
functions that are learned through self-play and bootstrapping [25].
TD-Gammon improves upon those ideas and uses neural networks
to learn those complex value functions — only to be again used
within search [35]. The combination of decision-time search and
value functions has been present in the remarkable milestones
where computers bested their human counterparts in challenging
games — DeepBlue for Chess [11] and AlphaGo for Go [33].

Recently, this powerful framework of search aided with (learned)
value functions has been extended to imperfect information games [26].
Regretminimization has quickly become the state-of-the-artmethod
for search [7, 9, 28, 31, 37? ] with the notable exceptions of [13, 24].

Meta learning has a long history when used for optimization [1,
29, 30, 36]. Prior work has considered bandits in Bayesian set-
tings [2], and meta learning paradigm in games has also been used
to “warm start” the initial strategies in games [17].

This work considers the meta-learning paradigm in the context
of regret minimization in games. Rather than hand-crafting an
optimization rule, one can learn a rule that is tailor-made for the

domain in hand. This structure of the learning problem closely
resembles the “learning to learn by gradient descent by gradient
descent” framework [1].

4 LEARNING NOT TO REGRET
We first describe the meta-learning framework for regret minimiza-
tion. Then we introduce two variants of meta-learned algorithms,
with and without regret minimization guarantees. Finally, we de-
scribe the setup in which we would like to minimize the regrets.

4.1 Meta-learning framework
Given a distribution of regret-minimization tasks F , we aim find an
online algorithm𝑚 which efficiently minimizes regret after𝑇 steps.
Formally, let 𝒓 (𝛿𝑎, 𝒙𝑡 |𝑓 , \ ) be the instantaneous regret for playing
only action 𝑎, experiencing reward 𝒙𝑡 at step 𝑡 ≤ 𝑇 , given a task
𝑓 ∼ F , and some parameters \ of the online algorithm. We define
the expected cumulative swap regret as

L(\ ) = E𝑓 ∼F

[
𝑇∑︁
𝑡=1

max
𝑎∈{1,...,𝑑 }

𝒓 (𝛿𝑎, 𝒙𝑡 |𝑓 , \ )
]
. (2)

Note that minimizing swap regret bounds the gap to a correlated
equilibrium, while minimizing external regret bounds the gap to a
(less restrictive) coarse-correlated equilibrium [4]. As Nash equilib-
ria are equivalent to each of the correlation classes in the zero-sum
setting, we are free to choose whichever regret we would like to
minimize.

We represent the algorithm𝑚 via a neural network \ and train
it to minimize (2). Minimizing swap regret rather then the external
regret leads to more stable learning. It forces the algorithm to
produce a strategy with low regret in every step, rather than at the
end of the optimization.

By utilizing a recurrent architecture we are also able to represent
algorithms that are history and/or time dependent. The dependence
is captured by the hidden state 𝒉 of the network. See also Section 5
for more details.

4.2 Neural Online Algorithm
The simplest option is to directly parameterize the online algorithm
as𝑚\ . We refer to this setup as neural online algorithm (NOA). The
𝑚\ receives as input the rewards 𝒙𝑡 and keeps track of its hidden
state 𝒉𝑡 . The gradient 𝜕L/𝜕\ can be estimated by sampling a batch
of tasks and applying backpropagation through the computation
graph as shown in Figure 1a. The gradient originates in the collec-
tion of regrets 𝒓1...𝑇 and propagates through the strategies 𝝈0...𝑇−1
and hidden states 𝒉0...𝑇−1. We don’t allow the gradient to propagate
through the rewards 𝒙1...𝑇 or the cumulative regrets 𝑹1...𝑇 . Thus,
the only way to influence the earlier optimization steps is through
the hidden states 𝒉0...𝑇−1 of the neural network. In experiments,
we observe strong empirical performance for NOA. However, there
is no guarantee that𝑚\ is regret minimizing.

4.3 Neural Predictive Regret Matching
Next, we turn to the recent predictive regret matching (PRM) [15]
to help us with regret minimization guarantees, see also Algo-
rithm 1. The algorithm has two functions, NextStrategy and
ObserveReward, which alternate over the sequence (1). The PRM
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(a) Neural online algorithm (NOA).
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(b) Neural predictive regret matching (NPRM).

Figure 1: Computational graphs of the proposed online al-
gorithms. The gradient flows only through the solid edges.
The 𝒉𝑡 denotes the hidden state of the neural network.

is an extension of regret matching (RM) and uses an additional
predictor 𝜋 . The predictor 𝜋 : R𝑑 → R𝑑 makes a prediction 𝒑𝑡 of
the next anticipated reward 𝒙𝑡+1. The PRM algorithm incorporates
𝒑𝑡 to compute the next strategy 𝝈𝑡 , by regret matching over pre-
dictive regret 𝝃𝑡 1. The RM algorithm can be instantiated as PRM
with 𝜋 = 0. Unless stated otherwise, we use PRM with a simple
predictor 𝜋 = 𝒙𝑡 , i.e. it predicts the next reward will be the same as
the current one.

We introduce neural predictive regret matching (NPRM), a vari-
ant of PRM which uses a predictor 𝜋\ parameterized by a neural
network \ . The 𝜋\ receives as input the rewards 𝒙𝑡 , cumulative
regret 𝑹𝑡 and keeps track of its hidden state 𝒉𝒕 . We train 𝜋\ to
minimize (2), just like NOA. The computational graph is shown in
Figure 1b. The output of the network 𝒑𝑡 is used by NextStrategy
to obtain the strategy 𝝈𝑡 . Similar to NOA, the gradient originates
in the collection of regrets 𝒓1...𝑇 and propagates through the strate-
gies 𝝈0...𝑇−1, hidden states 𝒉0...𝑇−1 and additionally the predictions
𝒑1...𝑇−1. We do not propagate the gradient through the the rewards
𝒙1...𝑇 or through the cumulative regrets 𝑹1...𝑇 . Again, any time-
dependence comes only through the hidden states 𝒉0...𝑇−1.

Importantly, we show that cumulative regret of NPRM grows
sub-linearly:

1Note the prediction changes the actual observed 𝒙𝑡+1 , unless we are at a fixed point.

Algorithm 1: Predictive regret matching [15]
1 𝑹0 ← 0 ∈ R𝑑 , 𝝈0 ← 1/𝑑 ∈ Δ𝑑

2 function NextStrategy()
3 𝝃𝑡 ← [𝑹𝑡−1 + 𝒓 (𝝈𝑡−1,𝒑𝑡 )]+
4 if 𝝃𝑡 ≠ 0 return 𝝈𝑡 ← 𝝃𝑡 / ∥𝝃𝑡 ∥1
5 else return 𝝈𝑡 ← arbitrary point in Δ𝑑

6 function ObserveReward(𝒙𝑡 )
7 𝑹𝑡 ← 𝑹𝑡−1 + 𝒓 (𝝈𝑡−1, 𝒙𝑡 )
8 𝒑𝑡 ← 𝜋 (𝒙𝑡 )

Theorem 1 (Correctness of Neural-Predicting). Let 𝜋\ :
R𝑑 → [−Δmax,Δmax]𝑑 be a regret predictor and let 𝑚 be a PRM
algorithm. Then𝑚 that uses 𝜋\ is a regret minimizer.

Proof. Since the reward 𝒙 and prediction 𝒑 for any action is
bounded by the maximum utility difference Δmax, for arbitrary 𝒑 it
holds

∥𝒓 (𝝈 , 𝒙) − 𝒓 (𝝈 ,𝒑)∥2 ≤ Δmax𝑑.

Using the PRM regret bound [15, Thm 3], we obtain

𝑅𝑇 ≤
√
2
(
𝑇∑︁
𝑡=1
∥𝒓 (𝝈𝑡−1, 𝒙𝑡 ) − 𝒓 (𝝈𝑡−1,𝒑𝑡 )∥2

) 1
2

≤
√
2 (Δmax𝑑𝑇 )

1
2 ∈ 𝑂

(√
𝑇

)
.

□

As NPRM is regret minimizing regardless of the prediction 𝒑𝑡 ,
our network outputs 𝒑𝑡 , rather than strategy 𝝈𝑡 as NOA does. This
allows us to achieve the best of both words — adaptive learning
and algorithm with a small cumulative regret in our domain, while
keeping 𝑂 (

√
𝑇 ) worst case regret guarantees.

In self-play settings, the predictions 𝒑𝑡 = 𝒙𝑡 used by PRM are of-
ten close to 𝒙𝑡+1, as the opponent’s strategy changes gradually. This
substantially improves the convergence speed when compared to
the non-predictive variants [15]. The NPRM can recover such a pre-
dictor: the network 𝜋\ can simply represent the identity function,
as it receives 𝒙𝑡 on the input.

However, in a setting against a best responding opponent (or
when value functions are used), PRM can perform poorly. As the
best response can drastically change at each time step, it is difficult
for PRM to make good predictions. In our experiments (Section 5),
we observe that PRM has degraded performance compared to self-
play, in fact it is even worse than when we used no predictions
(i.e. RM). In contrast, NPRM can meta-learn the predictor to the
task distribution F . In experiments, we observe that NPRM vastly
outperforms PRM.

4.4 Best Response, Search and Value Functions
In imperfect information search, regret minimization is used in
combination with a value function. Regret minimizers are used to
minimize counterfactual regret at each infostate of the search tree.
The value function returns values under a zero-regret (optimal)
policy in the subgame(s), given the policy in the search tree.
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Figure 2: Public game tree of a matrix game. The enclosed
areas highlight infostates for each player. Highlighted area
is solved and represented by the value function.

In our simplified setting, we imitate the value function by en-
suring the opponent utilizes a (zero-regret) best response to the
player’s strategy. Then a zero-regret policy of the player with such
value function is a Nash equilibrium.

4.4.1 Matrix Games. Matrix games allow us to investigate the
setup in its simplest form. This is because a matrix game corre-
sponds to a simple sequential game, and we can perform one-step
lookahead search for the first player, while the value function solves
a single-state subgame for the second player. This approach is visu-
alized in Figure 2. Note that as we update the search tree policy, the
inputs to the subgame change, and so does the subgame optimal
policy and the values as well.

4.4.2 Sequential Games. The situation gets more complicated in a
sequential game, where one needs to minimize the counterfactual
regret [40]. These games are typically solved using counterfactual
regret minimization (CFR), which decomposes the full regret into re-
grets at each infostate and minimizes them individually [39]. Again,
we will test our algorithms against a best-responding opponent.

5 EXPERIMENTS
For both NOA and NPRM, the neural network architecture we use
is a two layer LSTMs. For NOA, these two layers are followed by a
fully-connected layer with the softmax activation. For NPRM, we
additionally scale all outputs by Δmax, ensuring any reward vector
can be represented by the network. We minimize Eq. (2) for 𝑇 = 32
iterations over 1024 epochs, usingmini-batch of 4 games2 and Adam
optimizer with a learning rate 0.001. Other hyperparameters3 were
found using a small grid search and only best results are presented.
For evaluation, we run the algorithm for 2𝑇 = 64 iterations to
see whether our networks can generalize outside of the horizon 𝑇
and keep minimizing regret as the search continues. We train and
evaluate both NOA and NPRM and compare our methods against
(RM) and (PRM). Our results are presented in Figure 3.

5.1 Matrix Games
We first evaluate our method on matrix games, allowing us to focus
on a single-step search and single-state value function. Specifically,
2We perform the update using all infostates of each of the games.
3Specifically the size of the LSTM layer, L2 penalty, and gradient clipping constant.

expl𝑖 (𝝈𝑇 ) Speed-up expl𝑖 (𝝈2𝑇 ) Speed-up

RM 5.07 · 10−2 1 2.86 · 10−2 1
PRM 4.38 · 10−2 1.28 2.44 · 10−2 1.19
NOA 2.96 · 10−3 24.19 1.91 · 10−3 20.33
NPRM 2.11 · 10−2 3.12 9.56 · 10−3 3.56

(a) rock_paper_scissors (Y = 1/4).

expl𝑖 (𝝈𝑇 ) Speed-up expl𝑖 (𝝈2𝑇 ) Speed-up

RM 3.9 · 10−2 1 2.76 · 10−2 1
PRM 5.06 · 10−2 0.56 3.92 · 10−2 0.5
NOA 6.14 · 10−3 46.53 3.44 · 10−3 73.7
NPRM 1.19 · 10−2 9.72 7.15 · 10−3 16

(b) kuhn_poker (Y = 1/4).

Table 1: Relative performance of NOA, NPRM, and PRM com-
pared to RM in different games. We show the exploitability
of the average strategy 𝜎 of each algorithm after 𝑇 and 2𝑇
steps, as well as the speed-up over RM, i.e. how many more
steps would RM require to achieve lower exploitability.

we use rock_paper_scissors, perturbing the “rock-scissors” pay-
off with 𝑋 ∼ U(−Y, Y), see Appendix A.1 for more details. We
present results for Y ∈ {0, 1/4}, for both NOA and NPRM in Fig-
ures 3.

As one would expect, in the case without the perturbations,
NOA can simply learn the least-exploitable strategy, which leads to
significantly faster convergence compared to (P)RM, in our case by
several orders of magnitude. Notice that while the exploitability of
the average strategy is low, the average regret remains high. While
surprising at first, this can in fact happen; see Appendix B for more
details. NPRM produces much higher exploitability in this setting
compared to NOA. We hypothesize that a reason is the vanishing,
resp. exploding gradient of the PRM when the cumulative regret is
large4, resp. small.

However, our methods outperform both RM and PRM even in
the perturbed setting. At the end of the evaluation, i.e. after 2𝑇 =

64 iterations, NOA achieve almost an order of magnitude lower
exploitability. This translate to RM needing 20.3 and 3.6 times more
iterations than NOA and NPRM respectively to achieve the same
exploitability, see Table 1a. Finally, we can see that NPRM is indeed
able to minimize regret far above the number of iterations it has
been trained to do so (see Theorem 1). Perhaps surprisingly, the
same is true for NOA.

Notice that RMoften outperforms PRM, even in sequential games.
While surprising at first, the reason is that we minimize regret
against a value function rather than against self-play opponent.
PRM performs well in self-play settings, where the last-observed
reward is a good prediction of the next one as the opponent does
not radically change their strategy between iterations. This is no
longer the case when the values are coming from value functions,

4Actually, the gradient is zero if the regret is positive for at most one action.
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Figure 3: Comparison of regret minimization algorithms against best responding opponent. The y axis are in logaritmic scale
and are aligned where possible. The top row shows the average regret at time 𝜏 and the bottom row shows exploitability of the
average strategy 𝝈𝜏 . Vertical dashed line separates two regimes: training (up to 𝑇 steps) and generalization (from 𝑇 to 2𝑇 steps).
Colored areas show standard error for non-zero-noise settings.

where arbitrarily small modification of the input can lead to large
changes of the output [26].

5.2 Sequential Games
To evaluate our methods in sequential setting, we use a small stan-
dard benchmark kuhn_poker. The distribution F is generated by
changing terminal rewards of certain fixed terminal histories, see
Appendix A.2 for more details.

Our setup allows NOA andNPRM to learn a contextualized regret
minimizer, resulting in per-state specific regret minimization. This
is achieved by adding features to the input of the network. These can
encode cards in games like poker, or current board representation in
other games. As the games in our experiments are relatively small,
we opt for a simple one-hot encoding. As described in Section 4.4,
we utilize the setup of best responding opponent, resulting in CFR-
BR [19].

Our results, presented in Figure 3 show our method can outper-
form (P)RM even in a sequential setting. Specifically, even in the
perturbed setting after 2𝑇 steps, it would take 73.7, resp. 16-times
more steps for RM to reach the final exploitability of NOA, resp.
NPRM (see Table 1b).

6 CONCLUSION
We introduced two new algorithms to meta-learn regret minimiz-
ers for a distribution of games in a new “learning not to regret”
framework. One algorithm has better empirical performance, while
the other guarantees converge on any game. We evaluated our
algorithms in a general setting of playing with a value function.
Our experiments showed both outperform previous state-of-the-art
methods, sometimes by several orders of magnitude.

In the future, we plan to use our approach within the continual
resolving framework [21], and extend our work to general-sum
games or apply it within to framework of hindsight rationality [22]
for games that change over time.

A BENCHMARK GAMES
A.1 rock_paper_scissors
To obtain a distribution of matrix games, we perturb the “rock-
scissors” payoff. The utility is thus given by

𝑢1 = −𝑢2 = ©«
0 −1 1 + 𝑋
1 0 −1
−1 1 0

ª®¬ ,
where 𝑋 ∼ U(−Y, Y). The equilibrium of the unperturbed game
is uniform, making it a particularly simple problem to learn. For
𝑋 > 0, playing scissors more and rock less is beneficial.

A.2 kuhn_poker
We generate a distribution of games by changing the payoff agents
get when the first player gets the king, and the second got the queen.
This corresponds to changing 5 out of the 30 terminal utilities. Just
like before, the payoffs are modified by 𝑋 ∼ U(−Y, Y) each of the
payoffs independently.

B REGRET VS EXPLOITABILITY
We have seen in Section 5 that the average regret can remain high
even if exploitability is small. While surprising at first, we present
one example where this happens while playing agains the best
response. Consider a sequence of strategies

𝝈𝑡
𝑛 (𝜖) =

(
1
3 + 2𝜖,

1
3 − 𝜖,

1
3 − 𝜖

)
.

In rock_paper_scissors, this strategy prefers rock too much, and
thus the best response opponent will always choose paper, resulting
in external regret

𝒓𝑡 (𝜖) = (−1, 0, 1) − 𝜖1⇒ 𝑹𝜏 = 𝜏 (1 − 𝜖) .
However, the exploitability expl𝑛 (𝝈𝜏

𝑛 ) = 𝜖 can be arbitrarily small.
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