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ABSTRACT
Multiagent systems deployed in the real world need to cooperate

with other agents (including humans) nearly as effectively as these

agents cooperate with one another. To design such AI, and provide

guarantees of its effectiveness, we need to clearly specify what

types of agents our AI must be able to cooperate with. In this work

we propose a generic model of socially intelligent agents, which
are individually rational learners that are also able to cooperate

with one another (in the sense that their joint behavior is Pareto

efficient). We define rationality in terms of the regret incurred by

each agent over its lifetime, and show howwe can construct socially

intelligent agents for different forms of regret. We then discuss the

implications of this model for the development of “robust” MAS

that can cooperate with a wide variety of socially intelligent agents.
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1 INTRODUCTION
Multiagent systems deployed in the real world (e.g., autonomous

vehicle fleets) must be robust to the presence of other intelligent

agents that are unlike themselves, such as AI’s designed by other

companies, or possibly human beings. Ideally, such systems should

not only be robust to other heterogeneous agents, but should be

able to reliably cooperate with these agents when it would be mutu-

ally beneficial. The first step in designing such robust, cooperative

systems is to identify the types of agents they should be able to

cooperate with. The key challenge is here is that we will often have

little or no prior data regarding the behavior of other agents our sys-

temmight encounter. The goal of this work is therefore to develop a

formal model of socially intelligent1 behavior in multiagent settings,

which can serve as the basis for defining robust cooperation, and

for creating agents that satisfy this definition.

In developing our social intelligence (SI) model we restrict our

attention to the case of two adaptive agents playing a repeated bi-

matrix game. Our model imposes two requirements on these agents.

The first is that each be consistent, in the sense that they will eventu-
ally play a best-response to any fixed partner strategy. The second

is that each agent be compatible with some set of agents (potentially

just the agent itself), such that when paired with any other member

of this set, the joint payoffs will be Pareto efficient (over the set

of equilibrium strategies). Our model is inspired by the targeted
learning criteria [12, 13], with the key distinction being that we

1
While we borrow the terminology, we cannot claim that our model captures the

nuances of the psychological concept of social intelligence [8].
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require socially intelligent agents to be consistent against all possi-

ble partner strategies. This implies that socially intelligent agents

cannot simply fall back to a non-cooperative, “safe” strategy upon

encountering another adaptive agent. In Section 3.1, we consider

two notions of consistency against non-stationary partners. Our

main theoretical contribution (Section 4) is showing how agents

satisfying the SI criteria can be constructed for both definitions of

consistency. We conclude with a discussion of the practical util-

ity of this model for the design of multi-agent systems, and pose

additional theoretical questions as directions for future work.

2 PRELIMINARIES
We consider the case where interactions between agents take the

form of repeated, two-player general-sum matrix games. We con-

sider classes of games defined by a type space Θ, where the current
type 𝜃 ∈ Θ is known to both agents. For simplicity, we assume

that in all games both players have 𝑁 pure strategies (henceforth

“actions”) available.We let𝐺1 (𝜃 ) and𝐺2 (𝜃 ) denote the𝑁×𝑁 payoff

matrices for players 1 and 2 in the game defined by type 𝜃 ∈ Θ.
With a slight abuse of notation, we let 𝐺𝑖 (𝑠1, 𝑠2;𝜃 ) = 𝑠⊤

1
𝐺𝑖 (𝜃 )𝑠2

denote the expected payoffs for player 𝑖 ∈ 1, 2 under the mixed

strategy profile ⟨𝑠1, 𝑠2⟩. We assume that agents interact for a fixed

number of stages 0 < 𝑇 < ∞, and let 𝑎1

𝑡 and 𝑎2

𝑡 denote the ac-

tions chosen by players 1 and 2 in stage 0 < 𝑡 ≤ 𝑇 . We over-

load 𝑎1

𝑡 and 𝑎
2

𝑡 to also denote the mixed strategies that assign all

probability mass to actions 𝑎1

𝑡 and 𝑎2

𝑡 , such that 𝐺𝑖 (𝑎1

𝑡 , 𝑎
2

𝑡 ;𝜃 ) is
player 𝑖’s payoff at stage 𝑡 given type 𝜃 . We also assume that

for all 𝜃 ∈ Θ and 𝑎1, 𝑎2 ∈ [𝑁 ], 𝐺𝑖 (𝑎1, 𝑎2
;𝜃 ) ∈ [0, 1]. We let

𝑝 (𝑠1, 𝑠2;𝜃 ) = ⟨𝐺1 (𝑠1, 𝑠2
;𝜃 ),𝐺2 (𝑠1, 𝑠2

;𝜃 )⟩ denote the players’ payoff
profile given the joint strategy ⟨𝑠1, 𝑠2⟩ and type 𝜃 .

Let H𝑡 = (𝑁 × 𝑁 )𝑡 be the set of histories of play of length 𝑡

(with H0 = {∅}), and let H≤𝑡 =
⋃𝑡

𝑠=0
H𝑠 be the set of all histories

of length at most 𝑡 . An agent 𝜋 is pair of mappings ⟨𝜋1, 𝜋2⟩ with
𝜋𝑖 : Θ × H≤𝑇−1 ↦→ Δ(𝑁 ), where Δ(𝑁 ) is the set of probability

distributions over the action set [𝑁 ]. For each type 𝜃 ∈ Θ, an
agent defines separate behavioral strategies [15, Chapter 5.2.2] for
controlling player 1 and 2, which implies that the agent is aware of

its own player ID. Let ℎ𝑡 ∈ H𝑡 be the history of play up to stage 𝑡 ,

and let 𝑠𝑖𝑡 = 𝜋𝑖 (𝜃, ℎ𝑡−1) be player 𝑖’s action distribution at 𝑡 , with

𝑎𝑖𝑡 ∼ 𝑠𝑖𝑡 . Each player observes its partner’s actions, but not their

full action distributions. We overload 𝑝 to also denote the empirical

average payoff profile for a history ℎ, such that

𝑝𝑖 (ℎ;𝜃 ) = 1

|ℎ |

|ℎ |∑︁
𝑡=1

𝐺𝑖 (𝑎1

𝑡 (ℎ), 𝑎2

𝑡 (ℎ);𝜃 ), (1)

where |ℎ | is the length of the history, and 𝑎𝑖𝑡 (ℎ) is player 𝑖’s action at
stage 𝑡 observed under ℎ. Finally, all probabilities and expectations

will be conditional on the current type 𝜃 , and the strategies 𝜋1 and



𝜋2 selecting actions for players 1 and 2 respectively. These define a

finite probability space over the set of final histories ℎ𝑇 ∈ H𝑇 .

3 CONSISTENCY AND COMPATIBILITY
Informally, we say that an agent 𝜋 is socially intelligent (SI) if for
every type 𝜃 ∈ Θ it is both consistent with 𝜃 for every possible

partner strategy, and compatible with itself under 𝜃 . Consistency

means that 𝜋 is guaranteed to perform nearly as well as some best-

response to its partner’s observable behavior, while compatibility

means that the joint payoff profile will be nearly as good as that of

some Pareto-efficient joint strategy. In this section, we will consider

two formal definitions of consistency, leading to two definitions of

social intelligence.

3.1 Consistent Agents
Our first criteria for social intelligence is that an agent acts as a

consistent learner, and attempts to achieve a payoff nearly as large

as that of the best response to its partner’s strategy. This is compli-

cated by the fact that the partner’s strategy may be non-stationary

(particularly if it adapts to the agent as well). We therefore con-

sider two notions of consistency, adversarial and stochastic, that
account for this non-stationary behavior in different ways. Our first

definition of consistency requires that the agent be robust to such

adversarial partners, and relies on the standard notion of external
regret [6], defined as

𝑅ext𝑖 (ℎ;𝜃 ) = max

𝑎𝑖 ∈[𝑁 ]

|ℎ |∑︁
𝑡=1

{
𝐺𝑖 (𝑎𝑖 , 𝑎−𝑖𝑡 (ℎ);𝜃 ) −𝐺𝑖 (𝑎𝑖𝑡 (ℎ), 𝑎−𝑖𝑡 (ℎ);𝜃 )

}
(2)

where 𝑖 ∈ {1, 2} denotes the player ID of the agent in question, and

we use −𝑖 to denote the ID of its partner. Adversarial consistency

simply requires that an agent have bounded external regret (i.e.,

that it be Hannan consistent) over 𝑇 stages.

Definition 3.1 (Adversarial Consistency). For 𝛿, 𝜖,𝑇 > 0, an agent

𝜋 is (𝛿, 𝜖,𝑇 )-adversarially consistent if, for all types 𝜃 ∈ Θ, and all

partner agents 𝜋̃ , we have that 1

𝑇
𝑅ext
𝑖

(ℎ𝑇 ;𝜃 ) ≤ 𝜖 with probability

at least 1 − 𝛿 , for either player 𝑖 ∈ {1, 2}.

While external-regret is theoretically convenient, it is unlikely

that most real agents (including humans) would implement a no-

regret learning algorithm. More realistically, we could expect agents

to build an empirical model of their partner’s behavior, and act

optimally with respect to this model. If the partner could be assumed

to choose a fixed strategy 𝑠−𝑖 , then a natural strategy for our agent

would be fictitious play [14], under which the agent plays a best-

response to its partner’s empirical strategy so far. For history ℎ, we

define the fictitious play strategy 𝑠𝑖
fp
(ℎ;𝜃 ) as

𝑠𝑖
fp,𝑡

(ℎ;𝜃 ) ∈ arg max

𝑠∈Δ(𝑁 )

𝑡−1∑︁
𝑟=1

𝐺𝑖 (𝑠, 𝑎−𝑖𝑟 (ℎ);𝜃 ) (3)

where we choose the 𝑠𝑖
fp,𝑡

(ℎ;𝜃 ) to be the uniform distribution over

all optimal actions given ℎ𝑡−1 for player 𝑖 . We then define the

stochastic regret 𝑅sto
𝑖

(ℎ;𝜃 ) of player 𝑖 under history ℎ ∈ H≤𝑇 as

𝑅sto𝑖 (ℎ;𝜃 ) =
|ℎ |∑︁
𝑡=1

{
𝐺𝑖 (𝑠𝑖

fp,𝑡
(ℎ;𝜃 ), 𝑎−𝑖𝑡 (ℎ);𝜃 ) −𝐺𝑖 (𝑎𝑖𝑡 (ℎ), 𝑎−𝑖𝑡 (ℎ);𝜃 )

}
(4)

This is the difference between the payoff player 𝑖 would have re-

ceived had they followed the strategy suggested by fictitious play,

rather than 𝜋𝑖 , assuming that player −𝑖’s actions would have re-

mained unchanged. Using this notion of regret, we can now define

our second notion of consistency.

Definition 3.2 (Stochastic Consistency). For 𝛿, 𝜖,𝑇 > 0, an agent

𝜋 is (𝛿, 𝜖,𝑇 )-stochastically consistent if, for all types 𝜃 ∈ Θ, and all

partner agents 𝜋̃ , we have that 1

|𝑇 | 𝑅
sto

𝑖
(ℎ𝑇 ;𝜃 ) ≤ 𝜖 with probability

at least 1 − 𝛿 , for either player 𝑖 ∈ {1, 2}.

A stochastically consistent agent does not need to be robust to

adversarially chosen partner actions. If changes in the partner’s

strategy over time would have caused fictitious-play to perform

poorly, then a stochastically consistent agent is allowed to perform

poorly as well. The following lemma (proved in Appendix A) will

be useful for our analysis:

Lemma 3.3. For any history ℎ ∈ H𝑇 , type 𝜃 ∈ Θ, and player
𝑖 ∈ {1, 2}, we have that 𝑅sto

𝑖
(ℎ;𝜃 ) ≤ 𝑅ext

𝑖
(ℎ;𝜃 ).

We can also define the expected adversarial regret as

𝑅ext𝑖 (ℎ;𝜃 ) = max

𝑎𝑖 ∈[𝑁 ]

|ℎ |∑︁
𝑡=1

{
𝐺𝑖 (𝑎𝑖 , 𝑎−𝑖𝑡 (ℎ);𝜃 ) −𝐺𝑖 (𝑠𝑖𝑡 (ℎ), 𝑎−𝑖𝑡 (ℎ);𝜃 )

}
(5)

and the expected stochastic regret as

𝑅sto𝑖 (ℎ𝑡 ;𝜃 ) =
|ℎ |∑︁
𝑡=1

{
𝐺𝑖 (𝑠𝑖

fp,𝑡
(ℎ;𝜃 ), 𝑎−𝑖𝑡 (ℎ);𝜃 ) −𝐺𝑖 (𝑠𝑖𝑡 (ℎ), 𝑎−𝑖𝑡 (ℎ);𝜃 )

}
(6)

Finally we have

𝑅ext𝑖 (ℎ𝑡 ;𝜃 ) ≤ 𝑅ext𝑖 (ℎ𝑡 ;𝜃 ) +
√︂
𝑇

2

ln

1

𝛿
, (7)

𝑅sto𝑖 (ℎ𝑡 ;𝜃 ) ≤ 𝑅sto𝑖 (ℎ𝑡 ;𝜃 ) +
√︂
𝑇

2

ln

1

𝛿
, (8)

w.p. at least 1 − 𝛿 for all 𝑡 ≤ 𝑇 simultaneously (this follows directly

from [1, Lemma 4.1]. We therefore only need to bound the expected

regrets to provide high-probability regret bounds.

3.2 Compatible Agents
Consistency captures the idea that an agent is a general-purpose

learner. What makes such a learner socially intelligent, however,

is that it is capable of cooperating with other socially intelligent

agents. We therefore need a notion of cooperation that does not

preclude consistency. LetN(𝐺) ⊆ Δ(𝑁 ) ×Δ(𝑁 ) be the set of Nash
equilibria of the stage game𝐺 . For any 𝑠 ∈ N (𝐺 (𝜃 )), if both players
act according to their respective components of 𝑠 at each stage, then

neither will incur any external (or stochastic) regret in expectation.

For a fully cooperative game 𝐺 (with 𝐺1 = 𝐺2), N(𝐺) will contain
all globally optimal strategy profiles. It may, however, also contain

strategies that are highly suboptimal, but where neither player can



improve the joint payoff by changing their individual strategy, as

in the fully cooperative 2 × 2 game:

𝑎2 𝑏2

𝑎1
2 0

𝑏1
0 1

As in [12], we therefore define compatibility in terms of the Pareto
optimal Nash equilibra (PONE) [11] of 𝐺 , which we denote as the

set P(𝐺) ⊆ N (𝐺). We say that 𝑠 ∈ P(𝐺) if and only if 𝑠 ∈ N (𝐺),
and there does not exist 𝑠

′ ∈ N (𝐺) such that 𝐺1 (𝑠
′ ) > 𝐺1 (𝑠)

and 𝐺2 (𝑠
′ ) > 𝐺2 (𝑠). This means that 𝑠 is a PONE if it is a Nash

equilibrium of 𝐺 , and it is not strongly Pareto-dominated by any

other Nash equilibrium of 𝐺 . This gives us the following definition

of compatibility:

Definition 3.4 (Compatibility). For 𝛿, 𝜖,𝑇 > 0, two agents 𝜋 and

𝜋
′
are (𝛿, 𝜖,𝑇 )-compatible if, when 𝜋𝑖 and 𝜋

′
−𝑖 play together, for

any type 𝜃 ∈ Θ we have that w.p. at least 1 − 𝛿 , ∃𝑠 ∈ P(𝐺 (𝜃 )) s.t.

s.t. 𝑝𝑖 (𝑠;𝜃 ) − 𝑝𝑖 (ℎ𝑇 ;𝜃 ) ≤ 𝜖, (9)

for either 𝑖 = 1 or 𝑖 = 2.

A pair of agents is compatible if, when paired together, with high-

probability over their path of play ℎ𝑇 there will exist some PONE

that does not 𝜖-dominate their observed payoff profile 𝑝 (ℎ𝑇 ;𝜃 ).
Note that this definition of compatibility is very similar to that

provided in [12], but is now approximate, and defined over a finite

time horizon.

4 SOCIALLY INTELLIGENT AGENTS
It is natural to model an existing population of agents as a set

of compatible, but otherwise heterogeneous agents. We therefore

introduce the more general idea of a socially intelligent class of
agents that are compatible with any other member of their class:

Definition 4.1. A set 𝐶 of agents forms am (adversarially or

stochastically) socially intelligent class of agents w.r.t. Θ if, for some

𝛿, 𝜖,𝑇 > 0, each agent 𝜋 ∈ 𝐶 is (adversarially or stochastically)

(𝛿, 𝜖,𝑇 )-consistent for all 𝜃 ∈ Θ, and any two agents 𝜋, 𝜋 ′ ∈ 𝐶 are

(𝛿, 𝜖,𝑇 )-compatible over Θ. An individual agent 𝜋 is called socially
intelligent if it forms a socially intelligent class {𝜋} with itself.

For this notion of social intelligence to be meaningful, it must

be possible to construct agents that satisfy the SI criteria. For both

definitions of consistency, we will show that agents using a specific

fallback strategy satisfy these criteria. For type space Θ, we first
define a function 𝑠 (𝜃 ) ∈ P(𝐺 (𝜃 )) that maps from each type 𝜃 ∈ Θ
to a PONE strategy profile under that type. We can think of 𝑠 (𝜃 )
as a “convention” the agent or agents have settled upon for the

game 𝐺 (𝜃 ). Given a consistent agent 𝜋 , the fallback strategy plays

𝑠𝑖 (𝜃 ) at every stage so long as its partner plays the corresponding

strategy 𝑠−𝑖 (𝜃 ). If its partner eventually fails to play 𝑠−𝑖 (𝜃 ), the
fallback strategy switches to 𝜋𝑖 for all subsequent stages.

If 𝑠−𝑖 (𝜃 ) is a mixed strategy, directly testing for deviation from

𝑠−𝑖 (𝜃 ) is not straightforward. Instead, the fallback strategy exam-

ines the regret the agent has incurred so far, and switches if this

exceeds a time-dependent threshold. As 𝑠 (𝜃 ) is a Nash equilibrium

of 𝐺 (𝜃 ), we would expect each agent to have small regret when

both play according to 𝑠 (𝜃 ). Specifically, we have:

Lemma 4.2. For any 𝛿,𝑇 > 0, if both players follow strategy 𝑠 (𝜃 )
at each stage, then then with probability at least 1 − 𝛿 we have

𝑅ext𝑖 (ℎ𝑡 ;𝜃 ) ≤
√︂

2𝑇 ln

2

𝛿
(10)

for all 𝑡 ≤ 𝑇 and 𝑖 ∈ {1, 2}, and w.p. at lest 1 − 𝛿 we have

𝑅ext𝑖 (ℎ𝑡 ;𝜃 ) ≤ 2

√︂
2𝑇 ln

4

𝛿
(11)

for all 𝑡 ≤ 𝑇 𝑖 ∈ {1, 2}.

This follows from an application of the Azuma-Hoeffding in-

equality (shown in Appendix B). Combined with Lemma 3.3 this

also provides a bound on the stochastic regret as well. For both

definitions of consistency, we will use Lemma 4.2 to show that the

fallback strategy defined by 𝑠 (𝜃 ) is compatible with itself.

4.1 Stochastic Social Intelligence
We first derive a fallback strategy for the case of stochastic regret,

which will serve as a template for the adversarial case. By definition,

fictitious play has stochastic regret of zero. Therefore, the strategy

𝜋 fp which implements fictitious play (with uniform tie-breaking)

for each player is (𝛿, 𝜖,𝑇 )-stochastically consistent for any 𝛿, 𝜖,𝑇 >

0. We define the stochastic fallback strategy 𝜋
𝑇,𝜖
𝑖

for player 𝑖 as

follows:

(1) While 𝑅sto
𝑖

(ℎ𝑡−1;𝜃 ) < 𝜖𝑇 − 1, play 𝑠𝑖 (𝜃 ).
(2) If 𝑅sto

𝑖
(ℎ𝑡−1;𝜃 ) ≥ 𝜖𝑇 −1, follow 𝜋

fp

𝑖
for all subsequent stages.

Theorem 4.3. For any 𝛿,𝑇 > 0, let 𝜖0 ≥ 2

√︃
2

𝑇
ln

4

𝛿
, and let 𝜖 =

𝜖0 + 1

𝑇
. Then the stochastic fallback agent 𝜋 ,𝑇 ,𝜖 is stochastically

(𝛿, 𝜖,𝑇 )-socially intelligent.

Note that 𝜋 ,𝑇 ,𝜖 will only deviate if 𝑅sto
𝑖

(ℎ𝑡−1;𝜃 ) ≥ 𝜖0𝑇 for some

𝑡 ≤ 𝑇 . By Lemmas 3.3 and 4.2, we have that the probability of this

happening for either player is at most 𝛿 , and so 𝜋 ,𝑇 ,𝜖 is (𝛿, 𝜖0,𝑇 )-
compatible. As 𝜋

fp

𝑖
will incur no stochastic regret, and since the

maximum regret incurred in a single stage is 1, the maximum pos-

sible stochastic regret incurred by 𝜋𝑇,𝜖 will be 𝜖𝑇 surely. Therefore

𝜋 ,𝑇 ,𝜖 is (𝛿, 𝜖,𝑇 )-stochastically consistent. Since 𝜖 > 𝜖0, 𝜋
,𝑇 ,𝜖

is also

stochastically (𝛿, 𝜖,𝑇 )-SI.

4.2 Adversarial Social Intelligence
The case of adversarial regret is somewhat more complex. Here we

base our fallback strategy on the multiplicative weights [5] update
rule, defined as:

𝑠𝑖
mw,𝑘

(ℎ𝑡 ;𝜃 ) = 𝑠𝑖
mw,𝑘

(ℎ𝑡−1;𝜃 ) exp

(
−𝜂𝐺𝑖 (𝑘, 𝑎−𝑖𝑡−1

(ℎ))
)

(12)

for 𝑘 ∈ 𝑁 , where 𝑠𝑖
mw

(ℎ0;𝜃 ) is the uniform strategy. Define 𝜋mw,𝑇

as the agent that plays 𝑠𝑖
mw

(ℎ𝑡 ;𝜃 )with learning rate𝜂 =
√︁

8 ln(𝑁 /𝑇 ).
The expected external regret of 𝜋mw,𝑇

is bounded as

𝑅ext𝑖 (ℎ𝑇 ;𝜃 ) ≤
√︂
𝑇

2

ln𝑁 (13)

surely, by [1, Theorem 2.2]. Similar to the stochastic case, we then

define the adversarial fallback strategy 𝜋𝑇,𝜖 as follows:

(1) While 𝑅ext
𝑖

(ℎ𝑡 ;𝜃 ) ≤ 𝜖𝑇 −
√︃

𝑇
2

ln𝑁 − 1, play 𝑠𝑖 (𝜃 ).



(2) Otherwise, switch to 𝜋mw,𝑇
for all subsequent stages.

Theorem 4.4. For any 𝛿,𝑇 > 0, let 𝜖0 ≥
√︃

2

𝑇
ln

2

𝛿
, and let 𝜖1 =

𝜖0+
√︃

1

2𝑇
ln𝑁 + 1

𝑇
. Then for 𝜖 = 𝜖1+

√︃
𝑇
2

ln
1

𝛿
, the adversarial fallback

agent 𝜋 ,𝑇 ,𝜖1 is stochastically (𝛿, 𝜖,𝑇 )-socially intelligent.

The proof of is similar to that for Theorem 4.3. By the definition

of 𝜖1, 𝜋
,𝑇 ,𝜖1

will only deviate when playing with itself if at some

point 𝑡 ≤ 𝑇 one player incurs an expected external regret of at

least 𝜖0, and by Lemma 4.2 that will occur with probability at most

𝛿 . Therefore, 𝜋 ,𝑇 ,𝜖1
is (𝛿, 𝜖0,𝑇 )-compatible. We also have that the

total expected external regret of the MW agent 𝜋mw,𝑇
is at most√︁

(𝑇 /2) ln𝑁 . This means that if 𝜋 ,𝑇 ,𝜖1
switches at stage 𝑡 , then the

maximum possible expected external regret incurred by 𝜋 ,𝑇 ,𝜖1
will

be less than 𝑅ext
𝑖

(ℎ𝑡 ;𝜃 ) +
√︃

𝑇
2

ln𝑁 . Since 𝜋mw,𝑇
will always switch

just before this point is reached, its total expected regret will be

less than 𝜖1 surely, and will be less than 𝜖 w.p. 1 − 𝛿 . As 𝜖 ≥ 𝜖0, we

have that the adversarial fallback strategy 𝜋 ,𝑇 ,𝜖1
is adversarially

(𝛿, 𝜖,𝑇 )-socially intelligent.

5 DISCUSSION
While we have described a specific approach to designing socially

intelligent agents, there are likely many other ways these criteria

could be satisfied. Even restricting ourselves to the fallback strate-

gies considered here, different socially intelligent classes described

by different mappings 𝑠 (𝜃 ) would yield very different behaviors. A

critical theoretical and practical question then is whether we could

design a single agent capable of learning to cooperate with any

socially intelligent agent. Under our current definition of social in-

telligence, this reduces to the problem of learning to cooperate with

any consistent agent
2
. To see this, note that for any socially intelli-

gent class𝐶 , and any arbitrary joint action sequence 𝜎 ∈ {𝑁 ×𝑁 }𝑘 ,
we could construct another class 𝐶′

that initially play the “secret

code” sequence 𝜎𝑖 , and immediately fall back to some arbitrary con-

sistent strategy if the other player fails to do so. This then raises the

related question of how robust a socially intelligent class of agents

can be to stochastic or adversarial perturbations of actions taken

within an interaction. It may be possible to establish lower bounds

on the probability that cooperation between consistent agents will

fail for a given noise distribution.

6 RELATEDWORK
Our model is closely related to the previous targeted learning

model [12, 13], which defines similar compatibility and consistency

criteria. The main difference is that targeted learning only requires

consistency against a specific target class of partners, which gener-

ally would not include the agent itself, or other adaptive agents. We

also require that cooperation and consistent learning occur over

a fixed time horizon 𝑇 , rather than asymptotically. These differ-

ences mean that a hypothetical “universally cooperative” agent

might be able to leverage the consistency of an SI agent to achieve

cooperation without a prearranged convention.

This work is partly motivated by the practical challenge of using

reinforcement learning to train agents that are able to cooperate

2
This is known to be impossible in general (see [9]).

with previously unseen partners, a problem sometimes described

as ad hoc teamwork or zero-shot coordination. A key challenge in

using RL for such scenarios is the need to construct populations

of training partners (generally trained with RL themselves) that

capture the range of cooperative behaviors in the target task [3, 16].

At present, construction of these populations is guided by heuristics

that encourage diversity in the strategy space [2, 4, 10], but do

not capture the ability of other agents to adapt to the behavior of

others. By enforcing such a consistency requirement as our SI model

does, we would hope to create more realistic training partners for

cooperative multiagent RL.

7 CONCLUSIONS
This work has presented a novel framework for understanding the

behavior of rational agents in multiagent scenarios. We have shown

that it is possible to construct classes of consistent learning agents

that are also able to reliably cooperate with one another. Our social

intelligence model raises several important theoretical questions

that could be explored in future work. These include determining

whether we can design a single agent that can learn to cooperate

with any socially intelligent partner, and providing lower bounds on

how robust cooperation can be to noisy interactions. Future work

could also consider practical realizations of the social intelligence

model for multiagent reinforcement learning, training teams of

adaptive agents that (approximately) satisfy the SI criteria.
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APPENDICES
A PROOF OF LEMMA 3.3
We define 𝑃𝑎

𝑖
(ℎ;𝜃 ) as

𝑃𝑎𝑖 (ℎ;𝜃 ) =
|ℎ |∑︁
𝑡=1

𝐺𝑖 (𝑎, 𝑎−𝑖𝑡 (ℎ);𝜃 ), (14)

and

𝑃ext𝑖 (ℎ;𝜃 ) = max

𝑎∈𝑁
𝑃𝑎𝑖 (ℎ;𝜃 ). (15)

We also define 𝑃sto
𝑖

(ℎ;𝜃 ) as

𝑃sto𝑖 (ℎ;𝜃 ) =
|ℎ |∑︁
𝑡=1

𝐺𝑖 (𝑠𝑖
fp,𝑡

(ℎ;𝜃 ), 𝑎−𝑖𝑡 (ℎ);𝜃 ) (16)

We prove by induction on 𝑇 that 𝑃ext
𝑖

(ℎ𝑇 ;𝜃 ) ≥ 𝑃sto
𝑖

(ℎ;𝜃 ). This
is trivially true for 𝑇 = 1, as 𝑠𝑖

fp,1
(ℎ𝑇 ;𝜃 ) is simply the uniform

distribution over all 𝑁 actions. Define the regret of fictitious play

w.r.t. action 𝑎 ∈ 𝑁 as

𝑅𝑎𝑖 (ℎ;𝜃 ) = 𝑃𝑎𝑖 (ℎ;𝜃 ) − 𝑃sto𝑖 (ℎ;𝜃 ) (17)

and the external regret of fictitious play 𝑅𝑖 (ℎ;𝜃 ) as

𝑅𝑖 (ℎ;𝜃 ) = 𝑃ext𝑖 (ℎ;𝜃 ) − 𝑃sto𝑖 (ℎ;𝜃 ) . (18)

We also define the set 𝐴𝑖 (ℎ;𝜃 ) as

𝐴𝑖 (ℎ;𝜃 ) = arg max

𝑎∈𝑁
𝑅𝑎𝑖 (ℎ;𝜃 ). (19)

We observe that

𝑅𝑖 (ℎ𝑇+1;𝜃 ) = max

𝑎∈𝑁

{
𝐺𝑖 (𝑎, 𝑎−𝑖𝑇+1

(ℎ𝑇+1);𝜃 ) (20)

−𝐺𝑖 (𝑠𝑖
fp,𝑇+1

(ℎ𝑇+1;𝜃 ), 𝑎−𝑖𝑇 (ℎ);𝜃 ) + 𝑅𝑎𝑖 (ℎ𝑇 ;𝜃 )
}

(21)

By the definition of fictitious play, we have that for any action

𝑎 ∈ 𝐴𝑖 (ℎ𝑇 ;𝜃 ), the probability of 𝑎 under (𝑠𝑖
fp,𝑇+1

(ℎ𝑇+1;𝜃 ) is > 0.

Assuming that 𝑅𝑖 (ℎ𝑇 ;𝜃 ) ≥ 0, this means that for all 𝑎 ∈ 𝐴𝑖 (ℎ;𝜃 ),
𝑅𝑎
𝑖
(ℎ𝑇 ;𝜃 ) ≥ 0, and there exists 𝑎′𝐴𝑖 (ℎ𝑇 ;𝜃 ) such that

𝐺𝑖 (𝑎′, 𝑎−𝑖𝑇+1
(ℎ𝑇+1);𝜃 ) −𝐺𝑖 (𝑠𝑖

fp,𝑇+1
(ℎ𝑇+1;𝜃 ), 𝑎−𝑖𝑇 (ℎ);𝜃 ) ≥ 0. (22)

This in implies that 𝑅𝑎
′

𝑖
(ℎ𝑇+1;𝜃 ) ≥ 0, which in turn implies that

𝑅𝑖 (ℎ𝑇+1;𝜃 ) ≥ 0. This means that the payoff of the best action in

hindsight is always at least as large as the accumulated payoff of

fictitious play, and proves Lemma 3.3. □

B PROOF OF LEMMA 4.2
Here the type 𝜃 will be implicit. For 𝑖 ∈ {1, 2}, we define 𝑉 𝑖

𝑡 as

𝑉 𝑖
𝑡 = 𝐺𝑖 (𝑠𝑖𝑡 , 𝑠−𝑖𝑡 ) −𝐺𝑖 (𝑠𝑖𝑡 , 𝑎−𝑖𝑡 ) (23)

We can see that E[𝑉 𝑖
𝑡 |ℎ𝑡−1] = 0. We can then have that

𝑅ext𝑡 = max

𝑎∈𝑁

𝑡∑︁
𝑟=1

{
𝐺𝑖 (𝑎, 𝑠−𝑖𝑟 ) −𝐺𝑖 (𝑠𝑖𝑟 , 𝑎−𝑖𝑟 )

}
(24)

= max

𝑎∈𝑁

𝑡∑︁
𝑟=1

{
𝐺𝑖 (𝑎, 𝑠−𝑖𝑟 ) −𝐺𝑖 (𝑠𝑖𝑟 , 𝑠−𝑖𝑟 ) +𝐺𝑖 (𝑠𝑖𝑟 , 𝑠−𝑖𝑟 ) −𝐺𝑖 (𝑠𝑖𝑟 , 𝑎−𝑖𝑟 )

}
(25)

=

𝑡∑︁
𝑟=1

{
𝐺𝑖 (𝑠𝑖𝑟 , 𝑠−𝑖𝑟 ) −𝐺𝑖 (𝑠𝑖𝑟 , 𝑎−𝑖𝑟 )

}
=

𝑡∑︁
𝑟=1

𝑉 𝑖
𝑟 (26)

≤
√︂

2

𝑇
ln

1

𝛿
(27)

with probability 1 − 𝛿 for all 𝑡 ≤ 𝑇 simultaneously.

This follows from the fact that |𝑉 𝑖
𝑡 | ∈ [0, 1] and the “maximal”

Azuma-Hoeffding inequality [7]. The second equality follows from

the fact that ⟨𝑠𝑖𝑡 , 𝑠−𝑖𝑡 ⟩ = 𝑠 (𝜃 ) is a Nash equilibrium. The first bound

of Lemma 4.2 follows from a union bound over the probability for

both players, while the second bound combines this with Equation 7.

□
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