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ABSTRACT
This paper aims to enhance the predictive performance and com-
munication robustness of decentralized bilevel optimization for
personalized federated learning. To achieve better performance, we
introduce a bilevel problem that encourages cooperation among
agents; the goal of every agent is to minimize the total cost over
all agents by updating its personalized outer-parameter. For robust
communication, we solve the introduced problem over random
directed networks. Our solver utilizes a decentralized computation
algorithm for the gradient of the outer-parameter that runs over
directed networks. Empirical results demonstrate that our approach
outperforms baselines on personalization benchmarks and that it
functions over simulated random directed networks.

KEYWORDS
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1 INTRODUCTION
Recent studies have shown the effectiveness of decentralized per-
sonalization for federated learning (FL). Traditional FL [14] trains a
globally shared, or consensus, model parameter on a central server.
This scheme has two problems. First, studies have suggested that
a consensus model may not perform well for situations in which
the agents’ data distributions are heterogeneous [19]. Furthermore,
having a central server can lead to central point failure and band-
width bottlenecks [1]. Decentralized personalization [13, 22, 25] is
a promising approach to address both issues. In decentralized per-
sonalization, data heterogeneity is handled by training personally-
tuned models for agents, and decentralized communication allows
for peer-to-peer cooperation over communication, avoiding the
previously mentioned practical issues of central server settings.

Recent studies [10, 11] demonstrated the effectiveness of gradient-
based bilevel optimization in decentralized personalization. Bilevel
optimization refers to an optimization problem (outer-problem) that
embeds another optimization problem (inner-problem) as its con-
straint. Specifically, gradient-based bilevel optimization is consid-
ered to be effective when there are many parameters involved [4].
Prior works [10, 11] leverage the ability to handle many parameters
in their personalization schemes that partition parameters of a deep
neural network into consensus outer-parameters and personalized
inner-parameters.

Current bottlenecks for improving personalization with decen-
tralized bilevel optimization are the absence of cooperation among
agents and the limited robustness of the available communication
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networks. Previous works [10, 11] let each agent perform a local
gradient step to optimize its personalized parameter in the inner-
problem. However, the local gradient of inner-cost ignores how
perturbations to the parameter of each agent affect the performance
of the others, lacking efficient cooperation among agents. To en-
courage cooperative optimization, it is preferable to allow agents
to update their parameters such that the costs of other agents are
minimized as well. While such cooperative updates are considered
in another type of decentralized bilevel optimization [24], their
algorithm is available only on undirected networks, which can be
prone to the presence of failing agents and deadlocks [21].

Our contributions. This study proposes a decentralized bilevel
optimization method for personalization that enables agent coop-
eration for enhanced performance, and that can run over a more
robust communication scheme, namely, a random directed network.

Firstly, we formulate our problem setting called Personalized De-
centralized Bilevel Optimization (PDBO) which optimizes an agent-
wise personalized parameter as the outer-problem requiring agent
cooperation; every agent optimizes its outer-parameter to minimize
the total outer-cost over all agents.

Secondly, to solve PDBO in a more robust communication set-
ting, we investigate the decentralized computation algorithm for
the gradient of the outer-parameter (hyper-gradient) that runs over
random directed networks. Directed networks are known to be less
prone to issues that arise in undirected networks [21]. We initially
reveal that naively decentralizing a previous hyper-gradient com-
putation algorithm fails due to the directionality of communication.
Motivated by this negative result, we present Hyper-gradient Push
(HGP), which is a modified yet unbiased version of the previous
method that runs over directed networks.

Finally, we provide empirical evidence of the benefits of PDBO
solved with HGP by showing superior performance on personalized
FL benchmarks conducted on directed communications networks.

Paper Outline. The rest of the paper is organized as follows.
Section 2 introduces the formulation of a random directed net-
work (Fig. 1-a) on which agents communicate, as well as the sto-
chastic gradient push (SGP) [1, 15] which solves the inner-problem
(Fig. 1-b). Section 3 formulates PDBO and Section 4 proposes HGP
that estimates hyper-gradient (Fig. 1-c) required to perform the
outer-step of PDBO (Fig. 1-d). Finally, we present the experimental
results in Section 5, followed by the conclusion in Section 6.

Notation. ⟨𝑨⟩𝑖 𝑗 denotes the 𝑖-th row and 𝑗-th column block of
the matrix 𝑨 and ⟨𝒂⟩𝑖 denotes the 𝑖-th block vector of the vector
𝒂. For a function 𝑓 : R𝑑1 → R𝑑2 , we denote its total and partial
derivatives with respect to a vector 𝒙 ∈ R𝑑1 by d𝒙 𝑓 (𝒙) ∈ R𝑑1×𝑑2



(d) Outer step by
Gradient descent

(Eq. (7))

(b) Inner-optimization
by SGP (Alg. 1)

(c) Hyper-gradient
Estimation by HGP (Alg. 2)

(a) Random Directed Network (Section 2.1)

Estimate of
Hyper-gradient

d𝝀𝑖

𝑛∑
𝑠=1

𝐹𝑠
(
𝒙∗𝑠 (𝝀1, . . . ,𝝀𝑛),𝝀𝑠

)

Consensus
Inner-parameter

Personalized
Outer-parameter

𝝀𝑖

1 𝑖 𝑛 𝑛1 𝑖

𝒙𝑖 = 𝒙 𝑗 ,∀𝑗

Figure 1: Overview of PDBO solved by HGP.

and 𝜕𝒙 𝑓 (𝒙) ∈ R𝑑1×𝑑2 , respectively. Let [𝑛] = {1, . . . , 𝑛}, we use op-
erations {𝑥𝑖 }𝑖∈[𝑛] = {𝑥𝑖 | 𝑖 ∈ [𝑛]} for some values 𝑥𝑖 and [𝒙𝑖 ]𝑛𝑖=1 =
[𝒙⊤1 · · · 𝒙

⊤
𝑛 ]⊤ ∈ R𝑛𝑑 for vectors 𝑥𝑖 ∈ R𝑑 .

2 PRELIMINARIES
This section provides the background of our study. Section 2.1
introduces a model of the random directed network and Section 2.2
provides a formulation of SGP that solves the FL over random
directed networks.

2.1 Random Directed Communication Network
We model the random directed network following the previous
work of push-sum [17]. We consider a random directed network
consisting of 𝑛 agents and communication edges that randomly
realize at each time step. Let 𝛿𝑖�𝑗 ∈ {0, 1} be a random variable
where 𝛿𝑖�𝑗 = 1 denotes that there is a communication channel from
the 𝑖-th agent to the 𝑗-th agent at a single time step, and 𝛿𝑖�𝑗 = 0
otherwise. 𝛿𝑖�𝑗 are mutually independent for any (𝑖, 𝑗) such that
𝑖 ≠ 𝑗 , and 𝛿𝑖�𝑖 = 1 for every 𝑖 ∈ [𝑛]. We assume if 𝛿 𝑗�𝑖 > 0, then
𝛿𝑖�𝑗 > 0 and vice versa, implying the agents can communicate with
each other in a sufficiently long time interval. We denote the set
of sending edges of the 𝑖-th agent by 𝛿𝑖 = {𝛿𝑖�𝑗 } 𝑗∈[𝑛] and all the
edges in the network by 𝛿 = {𝛿𝑖 }𝑖∈[𝑛] . We assume that realizations
of 𝛿 are mutually independent between any different time steps.

2.2 Stochastic Gradient Push (SGP)
SGP [1, 15] is one of the most general decentralized solvers of the
following FL problem [14]:

𝒙†
𝑖
= argmin

𝒙𝑖 ; 𝒙𝑖=𝒙 𝑗 ,∀ 𝑗

∑︁
𝑘∈[𝑛]

E𝜉𝑘 [𝑓𝑘 (𝒙𝑘 ,𝝀𝑘 ; 𝜉𝑘 )] , ∀𝑖 ∈ [𝑛] (1)

where, the 𝑖-th agent pursues the optimal parameter 𝒙†
𝑖
∈ R𝑑𝒙 , that

makes consensus (𝒙𝑖 = 𝒙 𝑗 ,∀𝑗 ) over all the agents, while minimizing
its cost 𝑓𝑖 : R𝑑𝒙 ×R𝑑𝝀 → R. 𝑓𝑖 is parameterized by the local instance
𝜉𝑖 ∈ X (e.g., a tuple of inputs and their labels), which is a random
variable following its own local distribution. We also allow 𝑓𝑖 to
take outer-parameter 𝝀𝑖 ∈ R𝑑𝝀 as its argument.

Any 𝑖-th agent in SGP seeks 𝒙†
𝑖
by updating biased parameter

𝒛𝑖 ∈ R𝑑𝒙 and debias weight𝑤𝑖 ∈ R in parallel to obtain its debiased
parameter 𝒙𝑖 = 𝒛𝑖/𝑤𝑖 . Let 𝝋𝑖 : R𝑑𝒙 × R𝑑𝝀 → R𝑑𝒙 denote a local
update function defined as

𝝋𝑖 (𝒛𝑖 ,𝝀𝑖 ; 𝜉𝑖 ,𝑤𝑖 ) = 𝒛𝑖 − 𝛾𝑧𝜕 𝒛𝑖
𝑤𝑖

𝑓𝑖 (𝒛𝑖/𝑤𝑖 ,𝝀𝑖 ; 𝜉𝑖 ), (2)

where, 𝛾𝑧 ∈ R+ is the learning rate. We denote the independent
copies of 𝜉𝑖 and 𝛿𝑖 sampled at the 𝑡-th step as 𝜉 (𝑡 )

𝑖
and 𝛿 (𝑡 )

𝑖
, respec-

tively, and denote a weighted edge from 𝑗 to 𝑖 by

𝑝 𝑗�𝑖 (𝛿 𝑗 ) =
𝛿 𝑗�𝑖∑𝑛
𝑘=1 𝛿 𝑗�𝑘

. (3)

We then obtain the following SGP algorithm run by the 𝑖-th agent.

Algorithm 1: Stochastic Gradient Push [1]

1 𝑤
(0)
𝑖

� 1, 𝒛 (0)
𝑖

� 𝒙 (0)
𝑖

2 foreach 𝑡 = 0 to 𝑇 − 1 do
3 𝒛 (𝑡+1)

𝑖
�

∑𝑛
𝑗=1 𝑝 𝑗�𝑖 (𝛿

(𝑡 )
𝑗
)𝝋 𝑗 (𝒛 (𝑡 )𝑗 ,𝝀 𝑗 ; 𝜉

(𝑡 )
𝑗
,𝑤
(𝑡 )
𝑗
)

4 𝑤
(𝑡+1)
𝑖

�
∑𝑛
𝑗=1 𝑝 𝑗�𝑖 (𝛿

(𝑡 )
𝑗
)𝑤 (𝑡 )

𝑗

5 return 𝒙 (𝑇 )
𝑖

= 𝒛 (𝑇 )
𝑖
/𝑤 (𝑇 )

𝑖

3 PERSONALIZED DECENTRALIZED BILEVEL
OPTIMIZATION (PDBO)

This section introduces PDBO, the personalization problem formu-
lated as a bilevel problem. PDBO played by 𝑛 agents is given as

min
𝝀1,...,𝝀𝑛

∑︁
𝑠∈[𝑛]

𝐹𝑠 (𝒙†𝑠 (𝝀1, . . . ,𝝀𝑛),𝝀𝑠 ), (4a)

s.t. 𝒙†
𝑖
satisfies Eq. (1), ∀𝑖 ∈ [𝑛], (4b)

where the outer-problem (Eq. (4a)) lets the 𝑖-th agent to optimize
its outer-parameter 𝝀𝑖 to minimize the sum of the outer-cost 𝐹𝑖 :
R𝑑𝒙 × R𝑑𝝀 → R across all agents, encouraging agent cooperation.
Note that outer-parameters are free from the consensus, allowing
agents to optimize their own parameters for personalization.

Reformulating the Inner-problem via Stationary Point. To solve
PDBO by gradient methods, we rewrite the inner-problem (Eq. (4b))
to a stationary point equation of the inner-iteration [6].

We consider the stationary point of an iteration of SGP with
respect to a concatenated biased parameter 𝒛 = [𝒛𝑖 ]𝑛𝑖=1. Let 𝜉 =

{𝜉𝑖 }𝑖∈[𝑛] be a set of instances of all agents, 𝜁 = (𝛿, 𝜉) be all ran-
domness of the agents, and 𝝀 = [𝝀𝑖 ]𝑛𝑖=1 be a concatenated outer-
parameter. Recalling Alg. 1, we define a concatenated version of
the SGP iteration 𝝍 (𝒛,𝝀; 𝜁 ) as

⟨𝝍 (𝒛,𝝀; 𝜁 )⟩𝑖 =
∑︁
𝑗∈[𝑛]

𝑝 𝑗�𝑖 (𝛿 𝑗 )𝝋 𝑗 (𝒛 𝑗 ,𝝀 𝑗 ; 𝜉 𝑗 ,𝑤∗𝑗 ), ∀𝑖 ∈ [𝑛],

where,𝑤∗
𝑗
is the 𝑗-th element of the stationary point𝒘∗ = E[𝑷 (𝛿)]𝒘∗.

We finally introduce an assumption on 𝝍.

Assumption 3.1. 1 E𝜁 [𝝍 (·,𝝀; 𝜁 )] is a contraction ∀𝝀 ∈ R𝑛𝑑𝝀 .

Assumption 3.1 admits the following unique stationary point:
𝒛∗ (𝝀) = E𝜁 [𝝍 (𝒛∗ (𝝀),𝝀; 𝜁 )] . (5)

Letting 𝒙∗ (𝒛) := [𝒛𝑖/𝑤∗𝑖 ]
𝑛
𝑖=1, we reformulate Eq. (4) as

min
𝝀
𝐹 (𝒙∗ (𝒛∗ (𝝀)),𝝀), s.t. 𝒛∗ (𝝀) satisfies Eq. (5), (6)

1We found that it is difficult to provide practical scenarios in which such an assumption
holds true. Therefore, in Terashita and Hara [20], we propose a different hyper-gradient
estimation method derived from the stationary point given by optimality condition in
Eq. (1) rather than assuming Assumption 3.1.



where, 𝐹 (𝒙,𝝀) := ∑𝑛
𝑠=1 𝐹𝑠 (𝒙𝑠 ,𝝀𝑠 ).

4 HYPER-GRADIENT ESTIMATION OVER
RANDOM DIRECTED NETWORKS

To solve Eq. (6), agents need to compute the hyper-gradient d𝝀𝐹 :=
d𝝀𝐹 (𝒙∗ (𝒛∗ (𝝀)),𝝀) using gradient descent. Our interest is to allow
any 𝑖-th agent to perform the following local outer-step using the 𝑖-
th block of the concatenated hyper-gradient d𝝀𝑖

𝐹 = ⟨d𝝀𝐹 ⟩𝑖 ∈ R𝑑𝝀 :

𝝀𝑖 � 𝝀𝑖 − 𝛾𝜆d𝝀𝑖
𝐹, (7)

where, 𝛾𝜆 ∈ R+ is the outer learning rate.
To this end, this section presents an empirical estimator of the

hyper-gradient and its decentralized computation algorithm. Sec-
tion 4.1 introduces the empirical estimator Stochastic Recurrent
Backpropagation (SRB), following previous hyper-gradient compu-
tation methods. Section 4.2 then provides our observation that a
straightforward decentralization of SRB fails on directed networks.
Finally, Section 4.3 proposes HGP, a decentralized algorithm that
modifies SRB to run on random directed communication.

4.1 Empirical Estimation of the Hyper-gradient
In this section, we present the estimator of the hyper-gradient
d𝝀𝐹 by using approximate implicit differentiation and stochastic
iteration techniques [5, 6].

Approximate Implicit Differentiation. Let 𝜕∗𝒛𝝍 (𝜁 ) and 𝜕∗𝝀𝝍 (𝜁 ) be
Jacobians of 𝝍 (𝒛∗ (𝝀),𝝀; 𝜁 ) with respect to 𝒛∗ (𝝀) and 𝝀, respec-
tively. Assumption 3.1 ensures that 𝑰 − E[𝜕∗𝒛𝝍 (𝜁 )] is invertible and
allows the Neumann series approximation (𝑰 − E[𝜕∗𝒛𝝍 (𝜁 )])−1 ≈∑𝑀−1
𝑚=0 E[𝜕∗𝒛𝝍 (𝜁 )]𝑚 . Using these facts and implicit differentiation

of Eq. (5), we obtain

d𝝀𝐹 ≈ E[𝜕∗𝝀𝝍 (𝜁 )]
𝑀−1∑︁
𝑚=0
E[𝜕∗𝒛𝝍 (𝜁 )]𝑚𝜕∗𝒛𝐹 + 𝜕∗𝝀𝐹, (8)

where 𝜕∗𝒛𝐹 and 𝜕∗
𝝀
𝐹 are gradients of 𝐹 (𝒙∗ (𝒛∗ (𝝀)),𝝀) with respect

to 𝒛∗ (𝝀) and 𝝀, respectively.
Stochastic Recurrent Backpropagation (SRB). To avoid computa-

tion of full Jacobians in Eq. (8) and to estimate their expectation,
we follow the stochastic iteration technique [5].

Let q𝜁 (𝑚) and 𝜁 (𝑚) be independent copies of 𝜁 for every𝑚 ∈ N.
By replacing the expected Jacobians in Eq. (8) with their estimate
using q𝜁 (𝑚) and 𝜁 (𝑚) , we obtain the SRB that gives the unbiased
estimation of Eq. (8) denoted by d̂𝝀𝐹 .

𝒖 (0) � 𝜕∗𝒛𝐹, 𝒗 (0) � 𝜕∗𝝀𝐹 (9a)
for𝑚 = 0, . . . , 𝑀 − 1�����
{
𝒗 (𝑚+1) � 𝜕∗

𝝀
𝝍 (q𝜁 (𝑚) )𝒖 (𝑚) + 𝒗 (𝑚) ,

𝒖 (𝑚+1) � 𝜕∗𝒛𝝍 (𝜁 (𝑚) )𝒖 (𝑚)
(9b)

d̂𝝀𝐹 � 𝒗 (𝑀 )

Eq. (9b) only requires Jacobian-vector products 𝜕∗
𝝀
𝝍 (𝜁 )𝒖 (𝑚) and

𝜕∗𝒛𝝍 (𝜁 )𝒖 (𝑚) leading𝑂 (𝑛𝑑𝒙 +𝑛𝑑𝝀) and𝑂 (𝑛𝑑𝒙 ) in time, respectively.

(a) Stochastic Recurrent Backpropagation (SRB)
𝒖 (𝑚+1) ← 𝜕∗𝒛𝝍 (𝜁 )𝒖 (𝑚):::

(b) Hyper-Gradient Push (HGP)
�̃� (𝑚+1) ← 𝜕∗𝒛 �̃� (𝜁 )�̃� (𝑚):::

Locally
computable

:::::
Locally

:::::::
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Not surely delivered
from 1 to 2 (∵ 𝛿1�2 = 0)

U
nb

ia
se
d

Surely delivered from 2 to 1 (∵ 𝛿2�1 = 1)

=

(
𝑝1�1 (𝛿1�1)𝜕∗𝒛𝝋1 (𝜉1) 𝑝2�1 (𝛿2�1)𝜕∗𝒛𝝋1 (𝜉1)

�����: 0
𝑝1�2 (𝛿1�2)𝜕∗𝒛𝝋2 (𝜉2) 𝑝2�2 (𝛿2�2)𝜕∗𝒛𝝋2 (𝜉2)

) (
𝒖 (𝑚)1
𝒖 (𝑚)2

)
:::::::

=

(
𝑝1�1 (𝛿1)𝜕∗𝒛𝝋1 (𝜉1) ����: 0

𝑝1�2 (𝛿1)𝜕∗𝒛𝝋1 (𝜉1)
𝑝2�1 (𝛿2)𝜕∗𝒛𝝋2 (𝜉2) 𝑝2�2 (𝛿2)𝜕∗𝒛𝝋2 (𝜉2)

) (
𝒖 (𝑚)1
𝒖 (𝑚)2

)
:::::::

Communication
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1

2

Figure 2: An illustration of computation of 𝒖 (𝑚+1) and �̃� (𝑚+1)

by SRB (a) and HGP (b), respectively, with 𝑛 = 2.

4.2 SRB over Random Directed Networks
This section presents an impossibility result of decentralizing SRB
due to the locality of Jacobian and gradient blocks, and the direc-
tionality of communication.

Locality of Jacobian and Gradient Blocks. Due to the locality of
instances 𝜉𝑖 and communication edges 𝛿𝑖 , any 𝑖-th agent can lo-
cally compute only specific blocks of 𝜕∗𝒛𝐹 , 𝜕∗𝝀𝐹 , 𝜕

∗
𝒛𝝍 (𝜁 ), and 𝜕∗𝝀𝝍 (𝜁 )

appearing in Eq. (9), that are{
⟨𝜕∗𝒛𝐹 ⟩𝑖 = 𝜕𝒛𝑖 𝐹𝑖 (𝒛∗𝑖 (𝝀)/𝑤

∗
𝑖
,𝝀𝑖 )

⟨𝜕∗
𝝀
𝐹 ⟩𝑖 = 𝜕𝝀𝑖

𝐹𝑖 (𝒛∗𝑖 (𝝀)/𝑤
∗
𝑖
,𝝀𝑖 )

(10){
⟨𝜕∗𝒛𝝍 (𝜁 )⟩𝑖 𝑗 = 𝑝𝑖�𝑗 (𝛿𝑖 )𝜕∗𝒛𝑖𝝋𝑖 (𝜉𝑖 ),∀𝑗 ∈ [𝑛]
⟨𝜕∗
𝝀
𝝍 (𝜁 )⟩𝑖 𝑗 = 𝑝𝑖�𝑗 (𝛿𝑖 )𝜕∗𝝀𝑖

𝝋𝑖 (𝜉𝑖 ),∀𝑗 ∈ [𝑛]
(11)

where, 𝜕∗𝒛𝑖𝝋𝑖 (𝜉𝑖 ) and 𝜕
∗
𝝀𝑖
𝝋𝑖 (𝜉𝑖 ) are Jacobians of 𝝋𝑖 (𝒛𝑖 ,𝝀𝑖 ; 𝜉𝑖 ,𝑤∗𝑖 )

with respect to 𝒛𝑖 and 𝝀𝑖 , respectively. We also remark the locality
of hyper-gradient; the 𝑖-th agent only needs d̂𝝀𝑖

𝐹 = ⟨d̂𝝀𝐹 ⟩𝑖 ∈ R𝑑𝝀
to perform the outer-step (Eq. (7)).

SRB Fails on Directed Networks. This paragraph presents our
observation that SRB is surely commutable only when the commu-
nication networks are undirected.

We examine whether Eq. (9) can be computed over random
directed networks for any agent and edge realizations. Let 𝒖 (𝑚)

𝑖
=

⟨𝒖 (𝑚) ⟩𝑖 ∈ R𝑑𝒙 and 𝒗 (𝑚)
𝑖

= ⟨𝒗 (𝑚) ⟩𝑖 ∈ R𝑑𝝀 for all 𝑖 ∈ [𝑛]. Regarding
Eq. (9a), only the 𝑖-th agent can obtain the initial vectors 𝒖 (0)

𝑖
and

𝒗 (0)
𝑖

from Eq. (10). According to the locality of the initial vectors,
the 𝑖-th agent should be responsible for updating the 𝒖 (𝑚)

𝑖
and 𝒗 (𝑚)

𝑖
in Eq. (9b), obtaining the following local update iterations.{

𝒗 (𝑚+1)
𝑖

� 𝜕∗
𝝀𝑖
𝝋𝑖 (q𝜉 (𝑚)𝑖

)∑𝑛𝑗=1𝑝𝑖�𝑗 (q𝛿 (𝑚)𝑖
)𝒖 (𝑚)
𝑗
+ 𝒗 (𝑚)

𝑖
,

𝒖 (𝑚+1)
𝑖

� 𝜕∗𝒛𝑖𝝋𝑖 (𝜉
(𝑚)
𝑖
)∑𝑛𝑗=1𝑝𝑖�𝑗 (𝛿 (𝑚)𝑖

)𝒖 (𝑚)
𝑗

.

To complete the iterations, the 𝑖-th agent must receive 𝒖 (𝑚)
𝑗

from

all the 𝑗-th agent such that 𝛿𝑖�𝑗 = 1. However, receiving 𝒖 (𝑚)
𝑗

is
not surely possible as the realization of the communication channel
from 𝑗 to 𝑖 (i.e., 𝛿 𝑗�𝑖 = 1) may not coincide with 𝛿𝑖�𝑗 = 1 (Fig. 2-a).
In other words, the decentralized computation of SRB is available
only when the communications are undirected (i.e., 𝛿𝑖�𝑗 = 𝛿 𝑗�𝑖 ).



4.3 Hyper-Gradient Push (HGP)
We now propose HGP which enables any 𝑖-th agent to estimate
d𝝀𝑖

𝐹 over random directed networks. HGP relaxes the undirected
communication constraint by virtually reversing the direction of
communication while preserving unbiasedness from SRB.

We first assume that the 𝑖-th agent knows the receiving frequency
𝛿 𝑗�𝑖 = E𝛿 [𝛿 𝑗�𝑖 ] and expected weighted edge 𝑝𝑖�𝑗 = E𝛿 [𝑝𝑖�𝑗 (𝛿𝑖 )]
for all 𝑗 . In practice, agents can estimate them through SGP steps.

HGP no longer lets the 𝑖-th agent receive 𝒖 (𝑚)
𝑗

from sending
edges 𝛿𝑖�𝑗 but allows obtaining them through receiving edges 𝛿 𝑗�𝑖
while debiasing 𝒖 (𝑚)

𝑗
to maintain unbiassedness. More specifically,

we replace 𝑝𝑖�𝑗 (𝛿𝑖 ) in Eq. (11) with

𝑝 𝑗�𝑖 (𝛿 𝑗�𝑖 ) = 𝑝𝑖�𝑗

𝛿 𝑗�𝑖

𝛿 𝑗�𝑖
(12)

to introduce matrices 𝜕∗𝒛 �̃� (𝜁 ) ∈ R𝑛𝑑𝒙×𝑛𝑑𝒙 and 𝜕∗
𝝀
�̃� (𝜁 ) ∈ R𝑛𝑑𝝀×𝑛𝑑𝒙

such that for every 𝑖, 𝑗 ∈ [𝑛],

⟨𝜕∗𝒛 �̃� (𝜁 )⟩𝑖 𝑗 = 𝑝 𝑗�𝑖 (𝛿 𝑗�𝑖 )𝜕∗𝒛𝑖𝝋𝑖 (𝜉𝑖 ),
⟨𝜕∗𝝀 �̃� (𝜁 )⟩𝑖 𝑗 = 𝑝 𝑗�𝑖 (𝛿 𝑗�𝑖 )𝜕

∗
𝝀𝑖
𝝋𝑖 (𝜉𝑖 ).

By replacing 𝜕∗𝒛𝝍 (𝜁 ) and 𝜕∗𝝀𝝍 (𝜁 ) in Eq. (9b) with 𝜕
∗
𝒛 �̃� (𝜁 ) and 𝜕∗𝝀 �̃� (𝜁 ),

respectively, we obtain HGP as follows.

Algorithm 2: Hyper-Gradient Push (HGP)

1 �̃� (0)
𝑖

� 𝜕𝒛𝑖 𝐹𝑖 (𝒛∗𝑖 (𝝀)/𝑤
∗
𝑖
,𝝀𝑖 ), �̃� (0)

𝑖
� 𝜕𝝀𝑖

𝐹𝑖 (𝒛∗𝑖 (𝝀)/𝑤
∗
𝑖
,𝝀𝑖 )

2 foreach𝑚 = 0 to𝑀 − 1 do
3 �̃� (𝑚+1)

𝑖
� 𝜕∗

𝝀𝑖
𝝋𝑖 (q𝜉 (𝑚)𝑖

)∑𝑛𝑗=1 𝑝 𝑗�𝑖 (q𝛿 (𝑚)𝑗�𝑖 )�̃�
(𝑚)
𝑗
+ �̃� (𝑚)

𝑖

4 �̃� (𝑚+1)
𝑖

� 𝜕∗𝒛𝑖𝝋𝑖 (𝜉
(𝑚)
𝑖
)∑𝑛𝑗=1 𝑝 𝑗�𝑖 (𝛿 (𝑚)𝑗�𝑖 )�̃�

(𝑚)
𝑗

5 return d̃𝝀𝑖
𝐹 = �̃� (𝑀 )

𝑖

Alg. 2 is surely computable even on directed networks because
the 𝑖-th agent needs to receive �̃� (𝑚)

𝑗
from the agents with 𝛿 𝑗�𝑖 = 1,

which is always possible (Fig. 2-b).
We note that d̃𝝀𝑖

𝐹 is unbiased from d̂𝝀𝑖
𝐹 because Eq. (12) and the

independence of edge realization ensure ⟨𝜕∗𝒛 �̃� (𝜁 )⟩𝑖 𝑗 and ⟨𝜕∗𝝀𝝍 (𝜁 )⟩𝑖 𝑗
are unbiased. In addition, HGP enjoys low communication and time
complexity; each agent only exchange �̃� (𝑚)

𝑖
∈ R𝑑𝒙 and compute

Jacobian-vector products.

5 EXPERIMENTS
This section empirically validates the advantages of our PDBO
with HGP: the agent cooperation and the ability to run on random
directed networks. To do so, we applied and benchmarked PDBO on
FL personalization tasks over simulated random directed networks.
See Appendix A for the detailed settings.

Settings. We conducted personalization benchmarks on different
tasks: handwritten character recognition (EMNIST [3]), natural
image classification (CIFAR10 and CIFAR100 [8]), and language
modeling (Shakespeare [2, 14]) on a simulated random directed
communication network. For every task, we created heterogeneous
datasets such that every agent has its unique data distribution. We
simulated the random directed network by letting every edge 𝛿 𝑗�𝑖

Table 1: Test accuracy on personalization benchmarks (aver-
age / bottom 10% percentile).

EMNIST CIFAR10 CIFAR100 Shakespeare

SGP 81.3 / 73.5 73.0 / 64.2 42.9 / 35.6 28.8 / 24.6
Local 65.6 / 51.0 67.2 / 46.5 39.1 / 30.6 27.0 / 20.9
PDBO-MTL(local) 82.8 / 74.7 73.0 / 64.2 43.9 / 38.2 38.9 / 34.8
PDBO-MTL 82.8 / 75.2 73.5 / 65.9 44.1 / 38.7 39.7 / 36.5

independently realize at probability 𝛿 𝑗�𝑖 . For every 𝑖 and 𝑗 , 𝛿 𝑗�𝑖
was sampled from the uniform distribution over [0.4, 0.8].

We introduced a personalization method as special a case of
PDBO, which we call PDBO-MTL. PDBO-MTL let each agent train
an ensemble predictor that outputs weighted average predictions
across base predictors. PDBO-MTL trained the parameters of 𝐾 ∈
N base predictors as the inner-problem and optimized the outer-
parameters 𝝀𝑖 ∈ R𝐾 to obtain an ensemble weight vector 𝝈 (𝝀𝑖 ) ∈
[0, 1]𝐾 , where 𝝈 is the softmax function. To solve PDBO, any 𝑖-th
agent ran 𝑇 SGP inner-iterations using the train dataset. Every
agent then ran HGP with respect to the cross-entropy loss on the
train dataset to estimate its hyper-gradient. The outer-optimization
ran multiple outer-steps from the zeros initial outer-parameters
0𝑑𝝀 . We reported the average test accuracy at an outer-step that
gained the best validation accuracy.

We compared PDBO-MTL against three baselines. SGP and Local
trained ensemble predictors with non-weighted averaged predic-
tions by SGP and the local SGD, respectively. Another baseline,
referred to as PDBO-MTL(local), followed the PDBO-MTL but uti-
lized the local outer-gradient 𝜕∗

𝝀
𝐹 as the hyper-gradient. Similarly to

previous works [10, 11], PDBO-MTL(local) lacks agent cooperation
as it disregards the hyper-gradient of the other agents’ outer-costs.

Results. Table 1 shows the average test accuracy. Our PDBO-MTL
outperformed the baselines over all tasks, except for EMNIST clas-
sification. The superior performance of PDBO-MTL compared to
PDBO-MTL(local) verified that agent cooperation enhanced per-
sonalization performance. We also evaluated the accuracy of the
bottom 10% percentile of the agents (Table 1). PDBO-MTL improved
accuracy at the 10% percentile over the baselines in all tasks, con-
firming that the accuracy gained by our personalization was shared
among all agents.

6 CONCLUSION
This paper proposed a decentralized bilevel optimization problem
called PDBO, which optimizes an agent-wise personalized parame-
ter as the outer-problem requiring agent cooperation; every agent
is responsible for minimizing the total outer-cost over all agents.
We then presented HGP which is a decentralized computation al-
gorithm for the hyper-gradient that runs over random directed
networks. Empirical results showed that PDBO solved with HGP
outperforms baselines on personalized FL benchmarks conducted
on simulated directed communications networks, demonstrating
the advantages of our approach.
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A DETAILED EXPERIMENTAL SETTINGS
This section explains detailed settings of experiments in Section 5

A.1 Datasets and Models
We conducted personalization benchmarks on different tasks: handwritten character recognition (EMNIST [3]), natural image classification
(CIFAR10 and CIFAR100 [8]), and language modeling (Shakespeare [2, 14]) on a simulated random directed communication network.

For EMNIST, we used 10% of the original dataset as in Marfoq et al. [13]. We generated a personalized version of EMNIST involving a
combination of heterogeneous distributions in the following fashion. First, clusters are equally separated into three clusters which use
mean and variance for the normalization of inputs, generating heterogeneous input distributions. For each cluster, we sampled mean and
variance values independently from the uniform distribution with range [0, 1]. Second, instances are distributed across 100 agents using
𝑛-dimensional Dirichlet distribution of parameter 𝛼 = 0.4 for each label, modeling heterogeneous label distributions. Any agent splits the
assigned dataset set of EMNIST by randomly selecting 20% of instances to generate the test dataset. The remaining instances are split
into train and validation datasets with the ratio of 3 : 1. We use the validation dataset only for the early stopping in outer-optimization
of PDBO-MTL and PDBO-MTL(Local). We adopted CNN with two convolution and two fully-connected layers for the base predictor as in
Marfoq et al. [13].

For image classification on CIFAR10, we distributed samples with the same labels across agents according to a symmetric Dirichlet
distribution with parameter 0.4, as in Marfoq et al. [13], Wang et al. [23], to create a federated version. We used 40% of the total data as the
train and validation dataset in a 3:1 ratio and the rest as the test dataset. We also tested image classification using CIFAR100 exploiting
the availability of “coarse” and “fine” labels, using a two-stage Pachinko allocation method [9] as in Marfoq et al. [13], Reddi et al. [16], to
distribute 900, 300, and 1800 sized train, validation, test datasets to each agent, respectively. Pachinko allocation ran with the parameters
adopted in Marfoq et al. [13]. For both CIFAR10 and CIFAR100, we set 𝑛 = 20 and trained MobileNet-v2 [18], implemented in TorchVision[12],
with an additional linear layer.

The Shakespeare dataset was naturally divided by assigning all lines from the same character to the same agent as in Marfoq et al. [13]
and McMahan et al. [14]. From 728 characters, we randomly selected 𝑛 = 20 characters and assigned each of them to an agent. We trained
two stacked-LSTM layers with 256 hidden units followed by a densely-connected layer adopted in [13], to predict the next character from a
sequence of 200 English characters as input. The model embeds 80 characters into a learnable 8-dimensional embedding space. For each
agent, we used 80% of lines as the train and validation dataset in a 3:1 ratio and the rest as the test dataset. The lines are split from the
beginning in the order train, validation, and test to simulate the practical time dependence between datasets.

A.2 Approaches
We introduced a personalization method as special a case of PDBO, which we call PDBO-MTL. PDBO-MTL is obtained by formulating FedEM [13]
as PDBO to model the clustered input distributions. PDBO-MTL let each agent train an ensemble predictor that outputs weighted average
predictions across multiple base predictors. PDBO-MTL trained the parameters of 𝐾 ∈ N base predictors as the inner-problem and optimized
the outer-parameters 𝝀𝑖 ∈ R𝐾 to obtain the ensemble weight vector, 𝝈 (𝝀𝑖 ) ∈ [0, 1]𝐾 .

For baselines, due to the absence of personalization methods applicable to random directed communication networks, the local SGD
(Local) and standard SGP [15] (SGP) were adopted. We trained ensemble models with uniform prediction weights for Local and SGP to
fairly compare the performance difference between the baselines and our approach. This allows us to exclude architectural differences
from the reasons for performance improvements. We also evaluated PDBO-MTL(local), which follows the PDBO-MTL but utilized the local
outer-gradient 𝜕∗

𝝀
𝐹 as the hyper-gradient. Similarly to previous works [10, 11], PDBO-MTL(local) lacks agent cooperation since it disregards

the hyper-gradient of the other agents’ outer-costs.

A.3 Training Procedure
For all approaches, we performed the inner-optimization (SGP or local SGD) with learning rates scheduled to be multiplied by 0.1 at
the last 100 and 50 steps. For PDBO-MTL, PDBO-MTL(local), and SGP, we adopt an alternative formulation of SGP [15], which performs a
local gradient step after the communication, as it showed better performance in the inner-optimization. PDBO-MTL and PDBO-MTL(local)
performed multiple outer-steps. For all 𝑖 ∈ [𝑛] in the outer-problem, we ran Adam [7] iterations with (𝛽1, 𝛽2) = (0.90, 0.99) from the initial
outer-parameters 0𝐾 . Before every outer-step, every agent ran 𝑀 HGP iterations to obtain its hyper-gradient. We also made a practical
modification in HGP to sample 𝜕∗𝒛 �̃� (𝜁 ) and 𝜕∗𝝀 �̃� (𝜁 ) together using the same 𝜁 (𝑚) at the𝑚-th round, which leads the same length of the
Neumann series with the half sampling costs of the original HGP, although they are no more unbiased. For PDBO-MTL and PDBO-MTL(local),
𝐹𝑖 is the average cross-entropy loss over the local train dataset of the 𝑖-th agent and L2 regularization loss of 𝝀𝑖 for all 𝑖 ∈ [𝑛]. We reported
the mean test accuracy of an intermediate step that had maximum validation accuracy (i.e., early stopping). Hyper-parameters used for each
approach are shown in Table 2.



Table 2: Hyperparameters that produced results in Table 1

Task Method
Hyper-parameter

Num. of Inner Inner Batch-size Num. of Outer Outer
𝑀inner-steps L2 reg. decay learning rate outer-steps learning rate L2 reg. decay

EMNIST

PDBO-MTL 600 0.001 0.5 128 5 1.0 0.01 200
PDBO-MTL(Local) 0

SGP 600 0.001 0.5 128 n/a n/a n/a n/a
Local

CIFAR10

PDBO-MTL 1200 0.001 0.1 128 10 1.0 0.01 20
PDBO-MTL(Local) 0

SGP 1200 0.001 0.1 128 n/a n/a n/a n/a
Local

CIFAR100

PDBO-MTL 1200 0.001 0.2 128 10 1.0 0.01 20
PDBO-MTL(Local) 0

SGP 1200 0.001 0.2 128 n/a n/a n/a n/a
Local

Shakespeare

PDBO-MTL 1200 0.001 10.0 128 10 1.0 0.01 20
PDBO-MTL(Local) 0

SGP 1200 0.001 10.0 128 n/a n/a n/a n/a
Local
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